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My Research FieldsMy Research Fields

Human Computer Interac�on

(3D) Object Detec�on & Tracking and Pose Es�ma�on

3D Reconstruc�on



Human Computer Interac�onHuman Computer Interac�on



Human Machine Interfaces
Tangible User Interfaces

Human UAV Interac�on

Mixed Reality
Visualiza�on / Highligh�ng

Pose Es�ma�on

Object Tracking

Microdrone with Camera  

Cao et. al., OpenPose: real�me
mul�-person 2D pose es�ma�on
using Part Affinity Fields, CVPR

2017  

Stahl et. al., IST - Style Transfer with Instance
Segmenta�on, ISPA 2019

Human Computer Interac�onHuman Computer Interac�on



(3D) Object Detec�on & Tracking and Pose(3D) Object Detec�on & Tracking and Pose
Es�ma�onEs�ma�on



(3D) Object Detec�on & Tracking and Pose(3D) Object Detec�on & Tracking and Pose
Es�ma�onEs�ma�on



Direct Photometric Tracking [Dense Method]Direct Photometric Tracking [Dense Method]

Minimize error between observed image  and reference image  with pose 
, i.e.

Dense Photometric Tracking





Model-based Object-Tracking [Dense Method]Model-based Object-Tracking [Dense Method]

Model-based 3D Object Pose Es�ma�on





CNN supported Model-based 6D Pose RefinementCNN supported Model-based 6D Pose Refinement

Deep neural network to predict a transla�onal and rota�onal update
Model-based 6D pose refinement using a contour-based approach

Networks are trained from purely synthe�c data

F. Manhardt, W. Kehl, N. Navab, F. Tombari, Deep Model-Based 6D Pose Refinement in RGB, ECCV 2018



3D Reconstruc�on3D Reconstruc�on



3D Reconstruc�on3D Reconstruc�on

Mainly research in the field of den�stry

Intraoral (Surface) Scanner
Development of the world’s samllest intraoral scanner

Cone Beam Computed Tomography
Low dose reconstruc�ons

Automa�c calibra�on of a CBCT device

Ar�fact suppression [regularized reconstruc�on]

Recogni�on and compensa�on of pa�ent movements

Craniofacial Reconstruc�on
Without X-ray image

With one conven�onal X-ray image for regulariza�on



Craniofacial Reconstruc�onCraniofacial Reconstruc�on



Craniofacial Reconstruc�on?Craniofacial Reconstruc�on?

Infer skin from skull   Infer skull from skin

BMBF Project Kephalos





Add facial so� �ssue thickness (FSTT) by clay 
[Carrie Olsen, sculptor]

Skull + FSTT = Skin

Infer Skin from SkullInfer Skin from Skull



Add facial so� �ssue thickness (FSTT) by clay 
[Carrie Olsen, sculptor]

Virtual skin surface variants

Infer Skin from SkullInfer Skin from Skull



CT imaging DVT imaging Model-based skull es�mate

Infer Skull from SkinInfer Skull from Skin



Input DataInput Data



Skulls
60 CT scans

2 surface scans

Skull extracted from CT
(University Medical Center Mainz)

Input DataInput Data



Skulls
60 CT scans

2 surface scans

Heads
43 CT scans

39 surface scans

Skin extracted from CT
(University Medical Center Mainz)

Input DataInput Data



Skulls
60 CT scans

2 surface scans

Heads
43 CT scans

39 surface scans

Head scan
(ten24 3D Scanstore)

Input DataInput Data



Skulls
60 CT scans

2 surface scans

Heads
43 CT scans

39 surface scans

FSTT
43 corresponding skull/head
pairs from CT scans

FSTT from CT scans

Input DataInput Data



Skulls
60 CT scans

2 surface scans

Heads
43 CT scans

39 surface scans

FSTT
43 corresponding skull/head
pairs from CT scans

Input models have different triangula�ons!

    

Fit template models to input data

Volumetric skull template
(69k ver�ces, tetrahedra)      

Surface head template
(25k ver�ces, triangles)

Input DataInput Data



Head Scans

Skull Scans

Template

Head Fits

Template

Skull Fits

FSTTs

Head Model

Skull Model

FSTT Model Combined Model



Template Fi�ngTemplate Fi�ng



Template Fi�ngTemplate Fi�ng

CT Scan  Template  Coarse alignment  PCA  Fine-scale alignment



Fit skull template to 62 skulls

 

Fit head template to 82 heads

 

Skull and Head Reconstruc�onsSkull and Head Reconstruc�ons

Average RMS error < 0.5 mm in face area

All scans/models have same triangula�on

Allows for sta�s�cal evalua�on and model learning



Facial So� Tissue ThicknessFacial So� Tissue Thickness



Max-balls at outer skull ver�ces

FSTT corresponds to ball radii

Facial So� Tissue Thickness (FSTT)Facial So� Tissue Thickness (FSTT)



Facial So� Tissue Thickness (FSTT)Facial So� Tissue Thickness (FSTT)



Facial So� Tissue Thickness (FSTT)Facial So� Tissue Thickness (FSTT)



Model LearningModel Learning



Head Scans

Skull Scans

Template

Head Fits

Template

Skull Fits

FSTTs

Head Model

Skull Model

FSTT Model Combined Model



Side note [Principal Component Analysis (PCA)]Side note [Principal Component Analysis (PCA)]



Data almost always comes with noiseData almost always comes with noise



PCA helps to extract relevant informa�onPCA helps to extract relevant informa�on



Project the data on the most relevant subspaceProject the data on the most relevant subspace



Pictures …Pictures …



… are elements of a high dimensional vector space  

Make thousands of similar dogs by rota�ng, flipping, scaling, … the images 

Example from Andrew Glassner, Deep learning: a crash course, SIGGRAPH 2018



“Most important” components of the (dog) images …“Most important” components of the (dog) images …



… are the eigenvectors (eigendogs ) that can be found by PCA 

The first 12 eigendogs

Any of the inputs can be recreated by a weighted sum of eigenvectors
Here we need just 12 numbers (weights) (and the 12 eigendogs) to descrive any input image

PCA will tell us how to weight the images to recover any ot the input images

Project input image onto the different eigendogs: Dot product of image and respec�ve eigendogs

Example from Andrew Glassner, Deep learning: a crash course, SIGGRAPH 2018



More eigenvectors (eigendogs) result in more detailsMore eigenvectors (eigendogs) result in more details

Reconstruc�ons from 12 eigendogs



More eigenvectors (eigendogs) result in more detailsMore eigenvectors (eigendogs) result in more details

Reconstruc�ons from 100 eigendogs



More eigenvectors (eigendogs) result in more detailsMore eigenvectors (eigendogs) result in more details

Reconstruc�ons from 500 eigendogs



More eigenvectors (eigendogs) result in more detailsMore eigenvectors (eigendogs) result in more details

500 numbers per image plus 500 eigendog images to approximate any input image

Every image is represented by 500 numbers (together with the 500 eigendogs)
To store 500 eigendog images together with 500 numbers per image is much more efficient
than to store e.g. 100.000 complete input images

Any combina�on of 500 values is likely to produce an image of a Husky



Model LearningModel Learning



Head Scans

Skull Scans

Template

Head Fits

Template

Skull Fits

FSTTs

Head Model

Skull Model

FSTT Model Combined Model



1. Mean-center the 62 training skulls

2. Construct and decompose data matrix

3. Build model matrix

Linear Skull ModelLinear Skull Model



1. Mean-center the 82 training heads

2. Construct and decompose data matrix

3. Build model matrix

Linear Head ModelLinear Head Model



1. Mean-center the 43 training FSTTs

2. Construct and decompose data matrix

3. Build model matrix

 

Linear FSTT ModelLinear FSTT Model



Craniofacial Reconstruc�onCraniofacial Reconstruc�on

Regularize skull/head fi�ng by PCA models

Choose plausible FSTT distribu�ons

Automa�c landmarks, no manual work



Craniofacial Reconstruc�onCraniofacial Reconstruc�on

Input skull   Add FSTT   Fit skin



Are we done?Are we done?

Infer skin from skull   Infer skull from skin



Mul�linear ModelMul�linear Model



Head Scans

Skull Scans

Template

Head Fits

Template

Skull Fits

FSTTs

Head Model

Skull Model

FSTT Model Combined Model



Generate a Mul�linear ModelGenerate a Mul�linear Model

Linear skull model  

Linear FSTT model 

 

Generate synthe�c training data
 for 64 skulls × 32 FSTTs

(2048 training data)

 
Mul�linear skull/head model



1. Mean-center the 2048 training models

2. Construct and decompose data tensor

3. Build model tensor

 

Generate a Mul�linear ModelGenerate a Mul�linear Model

L. De Lathauwer, “Signal Processing Based on Mul�linear Algebra”, 1997





Infer Skull from SkinInfer Skull from Skin



scan skinny fat

Simula�ng Weight Changes for Face ScansSimula�ng Weight Changes for Face Scans



Mul�linear Model and Deep LearningMul�linear Model and Deep Learning



Lateral cephalometric radiograph

Panoramic radiograph

3D reconstruc�on of the skull

Craniofacial Reconstruc�on from a single X-rayCraniofacial Reconstruc�on from a single X-ray

Determine the 3D structure of the (craniofacial) skull from a single x-ray



Craniofacial Reconstruc�on from a single X-rayCraniofacial Reconstruc�on from a single X-ray



Craniofacial Reconstruc�on from a single X-rayCraniofacial Reconstruc�on from a single X-ray



Best results using DensNet, with same quality but faster convergence if we …
… start with weights from CheXNet (DenseNet trained with x-rays of the chest)

… start with weights from DenseNet, trained on ImageNet

… start training from scratch 



Advantages of dense blocks
Alleviate the vanishing-gradient problem

Strengthen feature propaga�on

Encourage feature reuse

Reduce number of parameters

5-layer dense block with growth rate of 

Densely Connected Convolu�onal NetworksDensely Connected Convolu�onal Networks

G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger, Densely connected convolu�onal networks, CVPR 2017



Training and Tes�ngTraining and Tes�ng



Visual Comparison of Reconstruc�on ResultsVisual Comparison of Reconstruc�on Results



A “Real World” ExampleA “Real World” Example



A “Real World” ExampleA “Real World” Example
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