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My Research Fields

e Human Computer Interaction
e (3D) Object Detection & Tracking and Pose Estimation

e 3D Reconstruction



Human Computer Interaction



Human Computer Interaction

¢ Human Machine Interfaces

o Tangible User Interfaces

o Human UAYV Interaction

Cao et. al., OpenPose: realtime
multi-person 2D pose estimation
using Part Affinity Fields, CVPR
2017

e Mixed Reality
o Visualization / Highlighting
o Pose Estimation

o Object Tracking

Stahl et. al., IST - Style Transfer with Instance
Segmentation, ISPA 2019



(3D) Object Detection & Tracking and Pose

Estimation




(3D) Object Detection & Tracking and Pose
Estimation



Direct Photometric Tracking [Dense Method]

e Minimize error between observed image I; and reference image Ir with pose
(R,t), i.e.

E(R,t) =) (Io(x) — Iz(TII(RX + t))))* — min

zel)

Dense Photometric Tracking






Model-based Object-Tracking [Dense Method]

Model-based 3D Object Pose Estimation

P@,1) = [] (He(@i(xc))P;(xc) T(1- He(cbi(xc)))Pg(I(xc))) . max
x.€()

~

with x. = II( K (T X)3x1)






CNN supported Model-based 6D Pose Refinement

e Deep neural network to predict a translational and rotational update

o Model-based 6D pose refinement using a contour-based approach

o Networks are trained from purely synthetic data
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F. Manhardt, W. Kehl, N. Navab, F. Tombari, Deep Model-Based 6D Pose Refinement in RGB, ECCV 2018




3D Reconstruction



3D Reconstruction

Mainly research in the field of dentistry

Intraoral (Surface) Scanner

o Development of the world’s samllest intraoral scanner

Cone Beam Computed Tomography

o Low dose reconstructions
o Automatic calibration of a CBCT device
o Artifact suppression [regularized reconstruction]

o Recognition and compensation of patient movements

Craniofacial Reconstruction
o Without X-ray image

o With one conventional X-ray image for regularization



Craniofacial Reconstruction




Craniofacial Reconstruction?

Infer skin from skull Infer skull from skin

BMBF Project Kephalos






Infer Skin from Skull

Add facial soft tissue thickness (FSTT) by clay Skull + FSTT = Skin
[Carrie Olsen, sculptor]



Infer Skin from Skulli

Add facial soft tissue thickness (FSTT) by clay
[Carrie Olsen, sculptor]

Virtual skin surface variants



Infer Skull from Skin

CT imaging DVT imaging Model-based skull estimate



Input Data



Input Data

e Skulls
o 60 CT scans

o 2 surface scans

Skull extracted from CT
(University Medical Center Mainz)



Input Data

e Skulls
o 60 CT scans

o 2 surface scans

e Heads
o 43 CT scans

o 39 surface scans

Skin extracted from CT
(University Medical Center Mainz)



Input Data

e Skulls
o 60 CT scans

o 2 surface scans

e Heads
o 43 CT scans

o 39 surface scans

Head scan
(ten24 3D Scanstore)



e Skulls
o 60 CT scans

o 2 surface scans

e Heads
o 43 CT scans

o 39 surface scans

e FSTT

o 43 corresponding skull/head FSTT from CT scans
pairs from CT scans



Input Data

e Skulls e |[nput models have different triangulations!
o 60 CT scans

o 2 surface scans

e Heads
o 43 CT scans

o 39 surface scans

e FSTT

o 43 corresponding skull/head
pairs from CT scans

Volumetric skull template Surface head template
(69k vertices, tetrahedra) (25k vertices, triangles)



Template

Head Scans

Head Fits

Skull Scans
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Template

FSTT Model

Combined Model
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Template Fitting



Template Fitting

CT Scan Template Coarse alignment PCA Fine-scale alignment



Skull and Head Reconstructions

Fit skull template to 62 skulls Fit head template to 82 heads

M \l <4 >

e Average RMS error < 0.5 mm in face area
e All scans/models have same triangulation

e Allows for statistical evaluation and model learning



Facial Soft Tissue Thickness




Facial Soft Tissue Thickness (FSTT)

e Max-balls at outer skull vertices

e FSTT corresponds to ball radii



Facial Soft Tissue Thickness (FSTT)

Mean of FSTT (mm) r -25 SD of FSTT (mm) P ‘



Facial Soft Tissue Thickness (FSTT)
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Model Learning
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Side note [Principal Component Analysis (PCA)]




Data almost always comes with noise
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PCA helps to extract relevant information

Eigenvectors

0 200 400 600 800 1000



Project the data on the most relevant subspace

0 200 400 600 800 1000



Pictures ...



e ... are elements of a high dimensional vector space R71¢ls

Husky 0 Husky 1 Husky 2

e Make thousands of similar dogs by rotating, flipping, scaling, ... the images

Generated 0 Generated 1 Generated 2 Generated 3 Generated 4 Generated 5

Generated 6 Generated 7 Generated 8 Generated 9 Generated 10 Generated 11

Example from Andrew Glassner, Deep learning: a crash course, SIGGRAPH 2018



“Most important” components of the (dog) images ...



.. are the eigenvectors (eigendogs € R71%#¢) that can be found by PCA

Eigendogs
eigendog 0 eigendog 1 eigendog 2 eigendog 3 eigendog 4 eigendog 5

The first 12 eigendogs

e Any of the inputs can be recreated by a weighted sum of eigenvectors

o Here we need just 12 numbers (weights) (and the 12 eigendogs) to descrive any input image

o PCA will tell us how to weight the images to recover any ot the input images
o Project input image onto the different eigendogs: Dot product of image and respective eigendogs

Example from Andrew Glassner, Deep learning: a crash course, SIGGRAPH 2018



More eigenvectors (eigendogs) result in more details

Reconstructions from 12 eigendogs

Rebuild 0 Rebuild 1 Rebuild 2 Rebuild 3 Rebuild 4 Rebuild 5
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Reconstructions from 12 eigendogs



More eigenvectors (eigendogs) result in more details

Reconstructions from 100 eigendogs
Rebuild 1 Rebuild 2 Rebuild 3 Rebuild 4
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Reconstructions from 100 eigendogs



More eigenvectors (eigendogs) result in more details

Reconstructions from 500 eigendogs
Rebuild 0 Rebuild 1 Rebuild 2 Rebuild 3 Rebuid 4 Rebuild 5

Reconstructions from 500 eigendogs



More eigenvectors (eigendogs) result in more details

Reconstructions from 500 eigendogs
Rebuild 0 Rebuild 1 Rebuild 2 Rebuild 3 Rebuild 4 Rebuild 5

500 numbers per image plus 500 eigendog images to approximate any input image

e Every image is represented by 500 numbers (together with the 500 eigendogs)

o To store 500 eigendog images together with 500 numbers per image is much more efficient
than to store e.g. 100.000 complete input images

e Any combination of 500 values is likely to produce an image of a Husky



Model Learning
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Linear Skull Model

1. Mean-center the 62 training skulls

— 1 62
© S—ﬁzizlsz

A

© S; =8; —S

2. Construct and decompose data matrix
oD =[8 8§ --- 8]

o D=UXV' =UZU,

3. Build model matrix
o Mgen =D - U,

o s(a) =5 + Mg - o



Linear Head Model

1. Mean-center the 82 training heads
- 82
o h = 8L2 S h;
O f'.lz = hz — E

2. Construct and decompose data matrix
oD = |hyhy - hg]
o D=UXV' = U3V,

3. Build model matrix
© Mhead =D- U;-

o h(vy) = h + Mpeaq - Y



Linear FSTT Model

1. Mean center the 43 training FSTTs
sy O G

A

Ofi:fi—f . [] .

2. Construct and decompose data matrix
o D= [f fy .- fy3]
o D=UXTV' =U;3IU,

>

3. Build model matrix
o Mgt = D - U;

o f(B) =f + My - B




Craniofacial Reconstruction

= Head Model
Input Skull Fitted Skull Sphere Model Reconstructed Face

e Regularize skull/head fitting by PCA models
e Choose plausible FSTT distributions

e Automatic landmarks, no manual work



Craniofacial Reconstruction

Input skull Add FSTT Fit skin



Are we done?

(2
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.'

Infer skin from skull Infer skull from skin




Multilinear Model



.

Template

Head Scans

Skull Scans

N —_—_—_—

Template

Head Fits

FSTT Model

Combined Model

Skull Fits

N~——

Skull Model

— —_




Generate a Multilinear Model

N
FSTT

Ea”%

Multilinear skull/head model

x(of) = <s<a§(g )fw) )

Generate synthetic training data
x(a, By,) for 64 skulls x 32 FSTTs

(2048 training data)

Linear FSTT model £(3)



Generate a Multilinear Model

1. Mean-center the 2048 training models 2

FSTT
— 1 2048
© X = 3048 D i1 X

&)

o X; =X; — X @
2. Construct and decompose data tensor

o Dijr = x(ay, By)1] @

© D =M X5 Ugn X3 Ugsts @

3. Build model tensor
o M =D Xy U;I;{ull X3 UfTstt

o x(a,B) =X+ M xy ax3 B E >

L. De Lathauwer, “Signal Processing Based on Multilinear Algebra”, 1997






Infer Skull from Skin




Simulating Weight Changes for Face Scans

scan skinny fat



Multilinear Model and Deep Learning




Craniofacial Reconstruction from a single X-ray

e Determine the 3D structure of the (craniofacial) skull from a single x-ray

3D reconstruction of the skull

Panoramic radiograph



Craniofacial Reconstruction from a single X-ray



Craniofacial Reconstruction from a single X-ray



e Best results using DensNet, with same quality but faster convergence if we ...

o ... start with weights from CheXNet (DenseNet trained with x-rays of the chest)

o ... start with weights from DenseNet, trained on ImageNet

o ... start training from scratch
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Densely Connected Convolutional Networks

Dense Block 3
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Dense Block 2
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e Advantages of dense blocks
o Alleviate the vanishing-gradient problem

o Strengthen feature propagation

o Encourage feature reuse =

o Reduce number of parameters

el
Jny‘ion 2
Tr )

5-layer dense block with growth rate of k = 4

G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger, Densely connected convolutional networks, CVPR 2017



Training and Testing

Artificial Lateral

Test Dataset Radiographs Evaluated Network Output
(Network Input)



Visual Comparison of Reconstruction Results
[ .
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(3) CNN from Scratch

(B) Tramfer Loarmming




A “Real World” Example

"Real World" Input

Preprocessed Input

Network Output



A “Real World” Example

"Real World" Input

Artificial Generated Radiograph

Preprocessed Input



Thank you

Computer Graphics and Vision
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RheinMain University of Applied Sciences
ulrich.schwanecke@hs-rm.de
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