

– SSDA 2019 / Islamabad – Aug 20, 2019

AMIGO – Automatic Indexing of Lecture Footage

Prof. Dr. Adrian Ulges

DCSM Department RheinMain University of Applied Sciences

Outline

1. AMIGO: A Smart Video Learning Platform

2. Image Matching in AMIGO

Keypoint Detection Keypoint Matching Hidden Markov Model State Filtering

3. Experiments

E-Learning

*

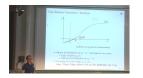
E-learning

- + choose your learning time
- $+\,$ choose your learning location
- + choose your learning speed
- + choose your learning depth

E-Learning

E-learning

- + choose your learning time
- + choose your learning location
- + choose your learning speed
- + choose your learning depth



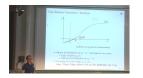
Educational Videos are a Key Driver

- Lecture recordings, screencasts, webcasts, …
- coursera, Khan Academy, udacity, ...

E-Learning

E-learning

- + choose your learning time
- + choose your learning location
- + choose your learning speed
- + choose your learning depth



Educational Videos are a Key Driver

- Lecture recordings, screencasts, webcasts, ...
- coursera, Khan Academy, udacity, ...
- Challenge: interaction is limited!

Motivation

Learning requires interaction

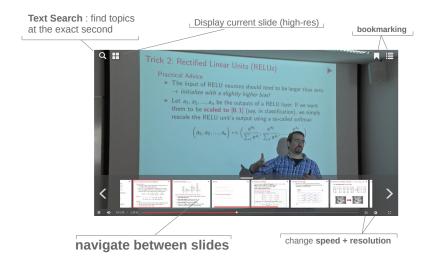
- navigation (where in the video does section 3 start?)
- fine-grain access (where can I find Example X?)
- storage and reorganisation (can I copy text from the video?)
- exploration (where can I find additional material?)

Motivation

Learning requires interaction

- navigation (where in the video does section 3 start?)
- fine-grain access (where can I find Example X?)
- storage and reorganisation (can I copy text from the video?)
- exploration (where can I find additional material?)

AMIGO Video Platform -> https://video.cs.hs-rm.de



Rich Interaction with Videos ... just like with (digital) documents

- navigate between pages
- text search
- hyperlinks

Rich Interaction with Videos ... just like with (digital) documents

- navigate between pages
- text search
- hyperlinks

Key Features

- automatic slide matching
 - video = pixels
 - slides = PDF

Rich Interaction with Videos ... just like with (digital) documents

- navigate between pages
- text search
- hyperlinks

Key Features

automatic slide matching

- video = pixels
- slides = PDF

automatic wikification

- find interesting phrases ("convolutional neural network")
- link them with Wikipedia

Rich Interaction with Videos ... just like with (digital) documents

- navigate between pages
- text search
- hyperlinks

Key Features

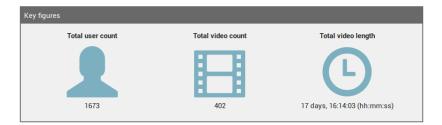
automatic slide matching

- video = pixels
- slides = PDF

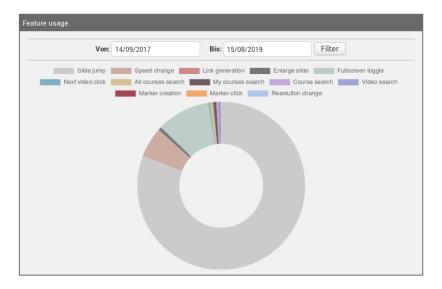
automatic wikification

- find interesting phrases ("convolutional neural network")
- link them with Wikipedia
- learning analytics
 - anynomous tracking of user actions
 - which video passages do students watch?
 - which terms do students search for?

AMIGO: Statistics¹

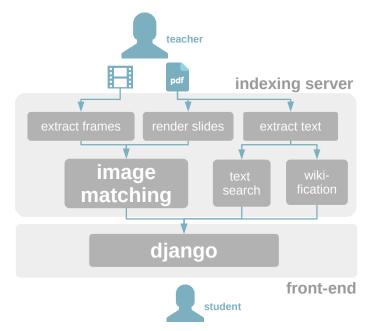


AMIGO: Statistics (cont'd)



AMIGO: Statistics (cont'd)

AMIGO Workflow



Outline

1. AMIGO: A Smart Video Learning Platform

2. Image Matching in AMIGO

Keypoint Detection Keypoint Matching Hidden Markov Model State Filtering

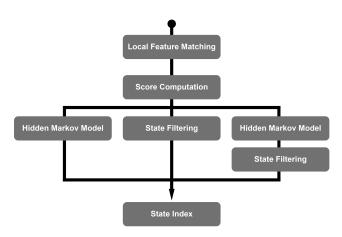
3. Experiments

Image Matching in AMIGO

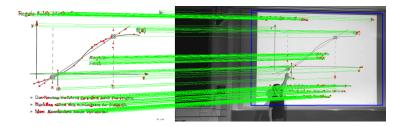
AMIGO matches slides in the lecture PDF with frames in the video

Two Main Steps

- 1. Keypoint Matching
- 2. Temporal Filtering



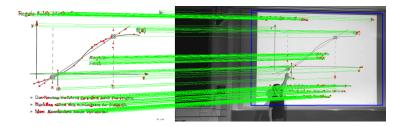
Keypoint Matching



- Video frames $\mathcal{F} = \{f_1, \ldots, f_m\}$ are sampled (1 per second)
- Slide images $S = \{s_1, ..., s_n\}$ are rendered (1 per slide)

Goal: Compute an **indexing**: a **mapping** from \mathcal{F} to $\mathcal{S} \cup \{s_0\}$ ($s_0 = no \ slide \ visible$)

Keypoint Matching



- Video frames $\mathcal{F} = \{f_1, \ldots, f_m\}$ are sampled (1 per second)
- Slide images $S = \{s_1, ..., s_n\}$ are rendered (1 per slide)

Goal: Compute an **indexing**: a **mapping** from \mathcal{F} to $\mathcal{S} \cup \{s_0\}$ ($s_0 = no \ slide \ visible$)

- 1. Match **SIFT features** between S and \mathcal{F} .
- 2. Improve the match quality using several **filters** (*NN-ratio of descriptor distance, homography estimation, ...*)

Outline

1. AMIGO: A Smart Video Learning Platform

$\ \ 2. \ \ {\ \ Image Matching in AMIGO}$

Keypoint Detection

Keypoint Matching Hidden Markov Model State Filtering

3. Experiments

Local Features: Motivation[2]

Key Idea: Even when images from the same class are not **globally** similar, they share certain **local characteristics**

Local Features: Motivation[2]

Key Idea: Even when images from the same class are not **globally** similar, they share certain **local characteristics**

Approach 1: Hand-engineered Local Features (here)

- state-of-the-art until 2011 (and still used frequently today)
- SIFT, SURF, HoG, Canny, ORB, ...

Local Features: Motivation[2]

Key Idea: Even when images from the same class are not **globally** similar, they share certain **local characteristics**

Approach 1: Hand-engineered Local Features (here)

- state-of-the-art until 2011 (and still used frequently today)
- SIFT, SURF, HoG, Canny, ORB, ...

Approach 2: Learn Local Features

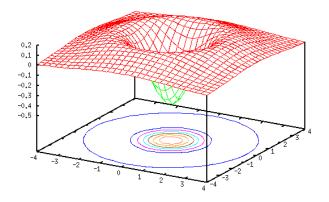
- state-of-the-art since 2011
- Convolutional Neural Networks (CNNs)

BLOB Detection: Example

⊁

How do we detect blob ... at different scales?

The DoG-Filter: Illustration image: [3]



- The DoG filter approximates the so-called Mexican Hat (aka "Laplacian-of-Gaussians") operator
- The DoG filter detects blobs (dark regions surrounded by a bright background)

Feature Detection: Scale Invariance

- Modern feature detectors come with a free scale parameter
- For DoG: the scale σ_2 (from which we compute σ_1)

Feature Detection: Scale Invariance

- Modern feature detectors come with a free scale parameter
- For DoG: the scale σ_2 (from which we compute σ_1)
- This parameter determines if our detector localizes fine, small structures or coarse, wide-spread structures

Feature Detection: Scale Invariance

- ⊁
- Modern feature detectors come with a free scale parameter
- For DoG: the scale σ_2 (from which we compute σ_1)
- This parameter determines if our detector localizes fine, small structures or coarse, wide-spread structures

 $\sigma_2 = 0.1$

$$\sigma_2 = 1.1$$

 $\sigma_2 = 3.3$

 $\sigma_2 = 4.4$

Outline

1. AMIGO: A Smart Video Learning Platform

2. Image Matching in AMIGO

Keypoint Detection Keypoint Matching

Hidden Markov Model State Filtering

3. Experiments

Local Features: Matching image: [1]

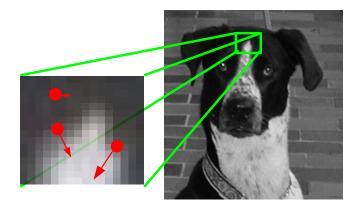
After extracting local features, we *match* them to recognize objects

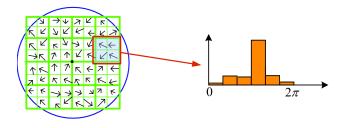
20

The Gradient: Properties

Remarks

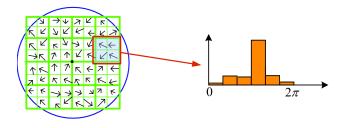
- The gradient always points into the direction of the **strongest increase in intensity**.
- ► The gradient's norm ||s(x, y)|| corresponds to the strength of the edge.





2. Description by Gradient Histograms

- Subdivide the (normalized) ROI into 4 × 4 windows.
- For each window, store a normalized histogram of the 8 (discretized) gradient orientations.



2. Description by Gradient Histograms

- Subdivide the (normalized) ROI into 4 × 4 windows.
- For each window, store a normalized histogram of the 8 (discretized) gradient orientations.
- Concatenate the 4 × 4 histograms (each 8-dimensional) into a 128-dimensional local feature vector

Outline

1. AMIGO: A Smart Video Learning Platform

2. Image Matching in AMIGO

Keypoint Detection Keypoint Matching Hidden Markov Model State Filtering

3. Experiments

Hidden Markov Model (HMM)

⊁

Simple Idea

Hidden Markov Model (HMM)

⊁

Simple Idea

For each frame, pick the highest-scored slide \rightarrow error-prone \circledast

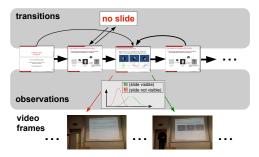
Hidden Markov Model (HMM)

Simple Idea

For each frame, pick the highest-scored slide \rightarrow error-prone

Idea: Employ reading order of material!

- HMM: For each frame, infer a state (slide) based on two constraints
 - 1. Transistions between certain slides are more likely
 - 2. Slides should match the video content well



Outline

1. AMIGO: A Smart Video Learning Platform

2. Image Matching in AMIGO

Keypoint Detection Keypoint Matching Hidden Markov Model State Filtering

3. Experiments

State Filtering

⊁

Observation

There are still short subsegments with instable recognitions

(slide 7 \rightarrow slide 18 \rightarrow slide 7 \rightarrow ...)

State Filtering

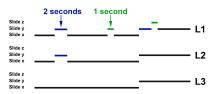
Observation

There are still short subsegments with instable recognitions

```
(slide 7 \rightarrow slide 18 \rightarrow slide 7 \rightarrow ...)
```

Approach: Heuristic Filtering

/* for segment length up to τ */ for L in 1,..., τ do /* iterate over all segments s */ for each segment do if segment duration $\leq L$ seconds then merge the segment with its predecessor end if end for end for



Outline

1. AMIGO: A Smart Video Learning Platform

2. Image Matching in AMIGO

Keypoint Detection Keypoint Matching Hidden Markov Model State Filtering

3. Experiments

Experiments: Recognition Results

Indexing at 1 fps \rightarrow 12,164 frame-slide pairs

- Manual annotation for each frame-slide pair
- Two different quality indicators
 - Percentage of frames with correctly recognized slides (state accuracy (SA))
 - Correctness of slide transitions (Jaccard index (JI), $J(\mathcal{T}, \mathcal{T}') = \frac{|\mathcal{T} \cap \mathcal{T}'|}{|\mathcal{T} \cup \mathcal{T}'|}$ with true transitions \mathcal{T} and transitions recognized by AMIGO \mathcal{T}')

Course	Торіс	baseline		homography valid.		hom.v. & HMM		final	
		JI	SA	JI	SA	JI	SA	JI	SA
CV	SfS	1.94	59.58	28.18	96.75	73.75	98.24	93.02	98.96
Analysis	Bisection	2.65	66.45	26.32	91.67	45.45	92.39	64.71	96.31
Analysis	Newton	4.81	71.60	16.07	93.45	45.00	95.39	60.00	96.96
Analysis	Motivation	4.35	76.97	33.33	95.76	77.78	97.37	100.00	99.18
Analysis	Regula Falsi	3.30	75.16	26.98	85.86	47.37	86.32	69.23	87.74
Analysis	Taylor series	5.89	88.33	8.33	88.85	15.19	90.99	73.33	91.18
average		3.82	73.02	23.20	92.05	50.76	93.45	76.72	95.05

Experiments: Error Inspection

We found 8 incorrect subsequences, caused by 4 different sources of error:

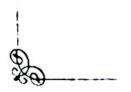
partial occlusion

lack of texture

redundant content

missing content

The End



References I

- Affine Covariant Features Dataset. http://www.robots.ox.ac.uk/~vgg/research/affine/ (retrieved: Oct 2016).
- [2] picture shared by Christoph Lampert. contact: http://pub.ist.ac.at/~chl/.
- [3] Wang, R.: Computer Image Processing and Analysis (E161) Course (Harvey Mudd College). http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html (retrieved: Oct 2016).
- Yes, this is Megan Fox. like, everywhere on the internet... (retrieved: Oct 2016).
- [5] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60(2):91–110, 2004.