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Neural Networks

Each neuron...

1. ... weighs its inputs

2. ... aggregates incoming energy

3. ... applies an activation function

5



Neural Networks

0.7

0.5

0.3

2

0

-1

input
1.6

output
0.73

0.5

3

-2

4

Each neuron...

1. ... weighs its inputs

2. ... aggregates incoming energy

3. ... applies an activation function

5



Neural Networks Training: Backpropagation

target
values ttraining

sample x

activa-
tion a

Training = Adjusting Weights

▸ iteratively, pick a training sample.

▸ compute the deviation from the target with a loss function.

▸ minimize loss by gradient descent.
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Enter: Deep Learning

SVMs Deep Learning

1990s – 2000s 2012 – today

nonlinearity
through...

kernels stacking layers
(at least 3)

optimization easy hard

#samples ≤ 20K up to 1010

feature
engineering

heavy none
(representation learning)

facilitated
by ...

— ▸ hardware (GPUs)

▸ clever topologies
(CNNs, LSTMs)

▸ tweaks
(losses+activations,
optimizers, shortlinks,
regularizers, attention)
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Neural Networks on Images: General Thoughts

▸ A network feeds pixel values to neurons.

▸ Why not connect a neuron with all pixels?

  

1. pixels interact mostly locally

2. shift invariance: recognize an object no matter where!

→ Convolution gives us just that!

8
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Correlation/Convolution

A convolution is a transformation of signals (here, images):

Definition (Input Images)

Let the input to a neural network be a (grayscale) image x

of size N×M. Each pixel (i , j) has a value x(i , j) ∈ R.

Definition (Convolution)

We define a filter mask w as a matrix of size W×W .

Then the convolution of image x with mask w is defined as:

y(i , j) ∶=
W /2

∑
k,l =−W /2

w(k , l) ⋅ x(i + k , j + l) // correlation

y(i , j) ∶=
W /2

∑
k,l =−W /2

w(k , l) ⋅ x(i − k , j − l) // convolution
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Correlation/Convolution (cont’d)
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1 1 0
1 0 -1

1 4 0 -1 -4
0 1 3 1 0
0 0 1 2 1
-2 0 0 1 1
-3 -3 -1 -1 0

Image x Mask w* = Image y

83
-1 -4 0 3 4
-1 -3 -2 -5 2
-1 -5 -6 -1 2
-2 -5 -5 -3 0
-1 -3 -1 0 0

-42

0 0 0 0 0
0 0 0 0 0

1 1 -2 -2 8

Remarks
▸ Intuition: Shift the filter mask over the image.

At each position, compute the weighted sum.

▸ At the boundary, the mask reaches outside the image.
We can pad the input image (here: zero padding).
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Convolution = Feature Detection image: [2]

mask input images feature maps

▸ By carefully designing filter masks, convolution allows us to
scan the image for certain features (here, the t-junction in
the “4”).

▸ The resulting feature map shows where “interesting” regions
in the image are.
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Convolutional Neural Networks
mask input images feature maps

Idea: a neural network that applies convolutions (=CNN)

▸ Layer 1: run filters over the image.

▸ Layer 2: classify based on feature maps.

▸ Such a convolutional neural network can
learn its filter masks by backpropagation!

14



Convolutional Neural Networks
mask input images feature maps

Idea: a neural network that applies convolutions (=CNN)

▸ Layer 1: run filters over the image.

▸ Layer 2: classify based on feature maps.

▸ Such a convolutional neural network can
learn its filter masks by backpropagation!

14



Convolutional Layers: Multi-Channel Input

▸ In practice, inputs to a convolution can have multiple
channels (e.g. color images: R,G,B).

convolution
(single-channel)

mask
(W x W)

N

M

N

M

convolution
(multi-channel)

mask
(W x W x #channels)

N

M

N

M

#channels

▸ We extend the convolution to sum over the channels too:

y(i , j) ∶=
W /2

∑
k,l =−W /2

#channels

∑
c=1

w(k, l , c) ⋅ x(i + k, j + l , c)

▸ Input and mask become 3D data “cubes” (tensors).
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Convolutional Layers: Multi-Channel Output

▸ In practice, we are not interested in detecting only one feature.

▸ We apply multiple filters, obtaining multiple feature maps.

▸ For K filters, we obtain a N ×M ×K output tensor.

convolution
(single filter)

mask

N

M

N

M

#channels

convolution
(multiple filters)

masks
(#masks=3)

N

M

#channels

N

M

#masks
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Convolutional Layers: Pooling

convolution Pooling
(scale by 2)

masks

N

M

N

M

N/2

M/2

f

activation
function

#channels #masks

#masks #masks

▸ Finally, we downscale the output masks using pooling.
▸ Pooling simply picks the mean or max value out of 2×2 pixels.
▸ We also apply an activation function for each pixel.
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Convoution = Few Weights

fully connected

N

M

convolutional

N

M

Fully Connected Layer

▸ N ×M pixels left, N ×M pixels right.

▸ All are connected pairwise: (N ×M)2 edges!

▸ Example: 320×240 input → 5.8 bio. parameters /

Convolutional Layer

▸ Each pixel has a small local receptive field.

▸ K filters. Each filter has W ×W values.

▸ Example: 20 filters, 5 × 5 → 500 parameters ,
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From CNNs to Deep CNNs

▸ State-of-the-Art CNNs are deep: They repeat convolution and
pooling multiple times.

▸ Spatial resolution decreases.

▸ The number of kernels increases.
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Deep CNNs images: [6]

With more layers, the level of abstraction increases
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Deep CNNs images: [6]
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DeepCNNs: Architectures image: [5]
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Example: Inception v3 [1]

▸ A deep CNN
(convolutional neural network)

▸ 22 layers, about 25 mio. parameters

▸ 5 bio. multiply-adds per inference

▸ pre-trained on 1.2 mio. images to
recognize 1000 object categories

▸ human-level object recognition
(ImageNet: 6.8% top-5-error)

▸ good basis for transfer learning.
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Tasks

▸ segmentation

▸ object detection

▸ object categorization

▸ similarity matching

▸ ...
24



Tasks (cont’d) image: [3]
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Deep Learning Toolboxes

Deep Learning has become easy...

▸ Multiple Frameworks
push deep learning
(Tensorflow, Pytorch, Keras, ...)

▸ These are well-supported and widely used (Google, Facebook,
Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ... )

Typical Features

▸ Flexible design of neural networks as Flow Graphs

▸ Backpropagation built-in (automatic differentiation)

▸ Out-of-the-box Parallelization on CPUs / GPUs

▸ pre-trained networks available (model zoos)

▸ Visualization of network behavior (e.g., tensorboard)

27
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Neural Networks as Flow Graphs

28
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Neural Networks as Flow Graphs
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Deep Learning Frameworks view NNs as so-called flow graphs:
▸ The boxes correspond to operations/functions:

Matrix multiplications, vector-adds, sigmoids, ...
▸ The nodes are data objects: vectors, matrices, or more

generally n-dimensional tensors.
29



Neural Networks as Flow Graphs

  

W1x

f MATMUL

x‘

f ADD

b1

z1

f SIGMOID

a1 W2

f MATMUL

x‘‘

f ADD

b2

z2

f SIGMOID

a2

E

t

da
ta

 f
lo

w

b2

b1

W1

x a1

W2

a2

data flow

There are three different kinds of tensors:

1. Inputs: features x, targets t, ...

2. Parameters: weight matrices (W 2,W 3), biases (b2,b3), ...

3. Results from applying operations / functions (a2,a3)
30



Tensorflow

Tensorflow is the most commonly used deep learning framework.

Features
▸ developed by Google

▸ open-source (License: Apache 2.0)

▸ Interfaces: Python, C/C++

▸ Platforms: Linux, Mac OS X, Windows, Android

Tensorboard: Illustrations

31
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6. Tooling: Tensorflow

7. [Practical] CNNs in Tensorflow

8. Transfer Learning
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Image-Graphics Retrieval

▸ R&D Project SMULGRAS (1 year, 2016-17)

▸ development of 2D-to-3D image-graphics search

▸ Applications: customized product design, community-based
modeling, copyright infringement, ...
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Image-Graphics Retrieval

Challenges

photo to 3D model pose estimation 3D model registration
(≈ 3D object recognition)
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Preprocessing: Rendering

▸ representation of 3D model
with rendered views

▸ camera sampling: Monte carlo / subdivision

▸ camera points at object center, roll = 0○

▸ background: plain, Flickr skybox

▸ graphics: high (raytracing, casted shadows)
low (Phong shading)
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View-based Approach: Two Models

“from-scratch” “transfer”
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views
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Experiments: Sample Results
▸ 200 models of chairs

(≈ 40,000 views, subset of [4])

▸ 340 (calibrated) photos of chairs
(self-captured, ground truth

by chessboard marker)

Recognition

  

Pose Estimation
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Experiments: Pose Estimation

Setup

▸ 200-400 random training views per chair

▸ accuracy measure: angle between camera positions c and c’

E(c , c ′) ∶= arccos ( cT ⋅ c ′
∣∣c ∣∣ ⋅ ∣∣c ′∣∣)

Results: Transfer Learning
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▸ best generalization: Inception Layer 7 (768x8x8 dimensions)
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Experiments: Comparing both models

Testing on graphics

▸ generalization between models

▸ best results with from-scratch
CNN

▸ average angle error of about
11.12○ (compared to 14.73○)

Testing on photos

▸ from-scratch CNN: strong domain drift observed

▸ transfer learning: model outperforms all from-scratch runs

41
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Experiments: Sample results

▸ from-scratch CNN (left) and transfer learning (right)

▸ Example 1: Angle error of about 30○

▸ Example 4: Angle error of about 13.5○
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