

– SSDA 2019 / Islamabad – Aug 20, 2019

Convolutional Neural Networks (CNNs)

Prof. Dr. Adrian Ulges

DCSM Department RheinMain University of Applied Sciences

Outline

⊁

1. Introduction

- 2. Neural Networks
- 3. Convolution
- 4. CNNs
- 5. Deep CNNs
- 6. Tooling: Tensorflow
- 7. [Practical] CNNs in Tensorflow
- 8. Transfer Learning

Introduction

Working Group "Learning and Visual Systems" > lavis.cs.hs-rm.de

Prof. Dr. Ralf Dörner Computer Graphics Visualization

Prof. Dr. Dirk Krechel Content Analytics Knowledge Management

Prof. Dr. Ulrich Schwanecke Computer Vision Mixed Reality

Prof. Dr. Adrian Ulges Machine Learning Data Science

Outline

1. Introduction

- 2. Neural Networks
- 3. Convolution
- 4. CNNs
- 5. Deep CNNs
- 6. Tooling: Tensorflow
- 7. [Practical] CNNs in Tensorflow
- 8. Transfer Learning

Neural Networks

Neural Networks

Each neuron...

- 1. ... weighs its inputs
- 2. ... aggregates incoming energy
- 3. ... applies an activation function

Neural Networks Training: Backpropagation

Training = Adjusting Weights

- iteratively, pick a training sample.
- compute the deviation from the target with a loss function.

Neural Networks Training: Backpropagation

Training = Adjusting Weights

- iteratively, pick a training sample.
- compute the deviation from the target with a loss function.
- minimize loss by gradient descent.

	SVMs	Deep Learning
	1990s – 2000s	2012 – today
nonlinearity	kernels	stacking layers
through		(at least 3)

	SVMs	Deep Learning
	1990s – 2000s	2012 – today
nonlinearity	kernels	stacking layers
through		(at least 3)
optimization	easy	hard

	SVMs	Deep Learning
	1990s – 2000s	2012 – today
nonlinearity	kernels	stacking layers
through		(at least 3)
optimization	easy	hard
#samples	$\leq 20K$	up to 10 ¹⁰

	SVMs	Deep Learning
	1990s – 2000s	2012 – today
nonlinearity	kernels	stacking layers
through		(at least 3)
optimization	easy	hard
#samples	≤ 20 <i>K</i>	up to 10 ¹⁰
feature	heavy	none
engineering		(representation learning)

	SVMs	Deep Learning		
	1990s – 2000s	2012 – today		
nonlinearity	kernels	stacking layers		
through		(at least 3)		
optimization	easy	hard		
#samples	≤ 20 <i>K</i>	up to 10 ¹⁰		
feature	heavy	none		
engineering		(representation learning)		
facilitated	—	 hardware (GPUs) 		
by		 clever topologies (CNNs, LSTMs) 		
		 tweaks (losses+activations, optimizers, shortlinks, regularizers, attention) 		

Neural Networks on Images: General Thoughts

- A network feeds pixel values to neurons.
- Why not connect a neuron with all pixels?

Neural Networks on Images: General Thoughts

- A network feeds pixel values to neurons.
- Why not connect a neuron with all pixels?

- 1. pixels interact mostly locally
- 2. shift invariance: recognize an object no matter where!

Neural Networks on Images: General Thoughts

- A network feeds pixel values to neurons.
- Why not connect a neuron with all pixels?

- 1. pixels interact mostly locally
- 2. shift invariance: recognize an object no matter where!
- \rightarrow Convolution gives us just that!

Outline

- 1. Introduction
- 2. Neural Networks
- 3. Convolution
- 4. CNNs
- 5. Deep CNNs
- 6. Tooling: Tensorflow
- 7. [Practical] CNNs in Tensorflow
- 8. Transfer Learning

Correlation/Convolution

A convolution is a transformation of **signals** (here, images):

Definition (Input Images)

Let the input to a neural network be a (grayscale) **image x** of size $N \times M$. Each pixel (i, j) has a value $x(i, j) \in \mathbb{R}$.

Correlation/Convolution

A convolution is a transformation of **signals** (here, images):

Definition (Input Images)

Let the input to a neural network be a (grayscale) **image x** of size $N \times M$. Each pixel (i, j) has a value $x(i, j) \in \mathbb{R}$.

Definition (Convolution)

We define a filter mask w as a matrix of size $W \times W$. Then the convolution of image x with mask w is defined as:

$$y(i,j) \coloneqq \sum_{k,l=-W/2}^{W/2} w(k,l) \cdot x(i+k,j+l) \quad // \text{ correlation}$$
$$y(i,j) \coloneqq \sum_{k,l=-W/2}^{W/2} w(k,l) \cdot x(i-k,j-l) \quad // \text{ convolution}$$

Correlation/Convolution (cont'd)

1	4	0	-1	-4
0	1	3	1	0
0	0	1	2	1
-2	0	0	1	1
-3	-3	-1	-1	0

Correlation/Convolution (cont'd)

Remarks

Intuition: Shift the filter mask over the image.
 At each position, compute the weighted sum.

Correlation/Convolution (cont'd)

Remarks

- Intuition: Shift the filter mask over the image. At each position, compute the weighted sum.
- At the **boundary**, the mask reaches outside the image.
 We can **pad** the input image (*here: zero padding*).

$Convolution = Feature \ Detection \ _{\tiny image: \ [2]}$

 By carefully designing filter masks, convolution allows us to scan the image for certain features (here, the t-junction in the "4").

$Convolution = Feature \ Detection \ _{\tiny image: \ [2]}$

- By carefully designing filter masks, convolution allows us to scan the image for certain features (here, the t-junction in the "4").
- The resulting feature map shows where "interesting" regions in the image are.

Outline

- 1. Introduction
- 2. Neural Networks
- 3. Convolution

4. CNNs

- 5. Deep CNNs
- 6. Tooling: Tensorflow
- 7. [Practical] CNNs in Tensorflow
- 8. Transfer Learning

Convolutional Neural Networks

Idea: a neural network that applies convolutions (=CNN)

- Layer 1: run filters over the image.
- Layer 2: classify based on feature maps.

Convolutional Neural Networks

Idea: a neural network that applies convolutions (=CNN)

- Layer 1: run filters over the image.
- Layer 2: classify based on feature maps.
- Such a <u>convolutional</u> neural network can learn its filter masks by backpropagation!

input neurons	input neurons				
000000000000000000000000000000000000000	first hidden layer	000000000000000000000000000000000000000	first hidden layer		

Convolutional Layers: Multi-Channel Input

 In practice, inputs to a convolution can have multiple channels (e.g. color images: R,G,B).

Convolutional Layers: Multi-Channel Input

 In practice, inputs to a convolution can have multiple channels (e.g. color images: R,G,B).

Convolutional Layers: Multi-Channel Input

 In practice, inputs to a convolution can have multiple channels (e.g. color images: R,G,B).

• We extend the convolution to sum over the channels too:

$$y(i,j) := \sum_{k,l=-W/2}^{W/2} \sum_{c=1}^{\#channels} w(k,l,c) \cdot x(i+k,j+l,c)$$

Input and mask become 3D data "cubes" (tensors).

Convolutional Layers: Multi-Channel Output

- In practice, we are not interested in detecting only <u>one</u> feature.
- We apply **multiple filters**, obtaining **multiple** feature maps.

Convolutional Layers: Multi-Channel Output

- ▶ In practice, we are not interested in detecting only <u>one</u> feature.
- We apply **multiple filters**, obtaining **multiple** feature maps.
- For K filters, we obtain a $N \times M \times K$ output tensor.

Convolutional Layers: Pooling

Convolutional Layers: Pooling

- Finally, we downscale the output masks using **pooling**.
- Pooling simply picks the mean or max value out of 2×2 pixels.

Convolutional Layers: Pooling

- Finally, we downscale the output masks using pooling.
- Pooling simply picks the mean or max value out of 2×2 pixels.
- We also apply an activation function for each pixel.

Convoution = Few Weights

Fully Connected Layer

- $N \times M$ pixels left, $N \times M$ pixels right.
- All are connected pairwise: $(N \times M)^2$ edges!
- ► Example: 320×240 input → 5.8 bio. parameters ③
Convoution = Few Weights

Fully Connected Layer

- $N \times M$ pixels left, $N \times M$ pixels right.
- All are connected pairwise: $(N \times M)^2$ edges!
- ► Example: 320×240 input → 5.8 bio. parameters ☺

Convolutional Layer

- Each pixel has a small local receptive field.
- ▶ *K* filters. Each filter has *W* × *W* values.
- **Example**: 20 filters, $5 \times 5 \rightarrow 500$ parameters \bigcirc

Outline

- 1. Introduction
- 2. Neural Networks
- 3. Convolution
- 4. CNNs
- 5. Deep CNNs
- 6. Tooling: Tensorflow
- 7. [Practical] CNNs in Tensorflow
- 8. Transfer Learning

From CNNs to Deep CNNs

 State-of-the-Art CNNs are deep: They repeat convolution and pooling multiple times.

From CNNs to Deep CNNs

- State-of-the-Art CNNs are deep: They repeat convolution and pooling multiple times.
- Spatial resolution decreases.
- The number of kernels increases.

$\underline{Deep} \ CNNs \ _{\text{images: [6]}}$

With more layers, the level of abstraction increases

Deep CNNs images: [6]

With more layers, the level of abstraction increases

DeepCNNs: Architectures image: [5]

Example: Inception v3 [1]

- A deep CNN (convolutional neural network)
- > 22 layers, about 25 mio. parameters
- ▶ 5 bio. multiply-adds per inference
- pre-trained on 1.2 mio. images to recognize 1000 object categories

Example: Inception v3 [1]

- A deep CNN (convolutional neural network)
- > 22 layers, about 25 mio. parameters
- ▶ 5 bio. multiply-adds per inference
- pre-trained on 1.2 mio. images to recognize 1000 object categories
- human-level object recognition (ImageNet: 6.8% top-5-error)

Example: Inception v3 [1]

- A deep CNN (convolutional neural network)
- > 22 layers, about 25 mio. parameters
- ▶ 5 bio. multiply-adds per inference
- pre-trained on 1.2 mio. images to recognize 1000 object categories
- human-level object recognition (ImageNet: 6.8% top-5-error)
- good basis for transfer learning.

Tasks

- segmentation
- object detection
- object categorization
- similarity matching

<u>۱</u>

Tasks (cont'd) image: [3]

Outline

- 1. Introduction
- 2. Neural Networks
- 3. Convolution
- 4. CNNs
- 5. Deep CNNs
- 6. Tooling: Tensorflow
- 7. [Practical] CNNs in Tensorflow
- 8. Transfer Learning

Deep Learning has become easy...

 Multiple Frameworks push deep learning (Tensorflow, Pytorch, Keras, ...)

Deep Learning has become easy...

 Multiple Frameworks push deep learning (Tensorflow, Pytorch, Keras, ...)

 These are well-supported and widely used (Google, Facebook, Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

Deep Learning has become easy...

 Multiple Frameworks push deep learning (Tensorflow, Pytorch, Keras, ...)

 These are well-supported and widely used (Google, Facebook, Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

Typical Features

Flexible design of neural networks as Flow Graphs

Deep Learning has become easy...

 Multiple Frameworks push deep learning (Tensorflow, Pytorch, Keras, ...)

 These are well-supported and widely used (Google, Facebook, Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

- Flexible design of neural networks as Flow Graphs
- Backpropagation built-in (automatic differentiation)

Deep Learning has become easy...

 Multiple Frameworks push deep learning (Tensorflow, Pytorch, Keras, ...)

 These are well-supported and widely used (Google, Facebook, Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

- Flexible design of neural networks as Flow Graphs
- Backpropagation built-in (automatic differentiation)
- Out-of-the-box Parallelization on CPUs / GPUs

Deep Learning has become easy...

 Multiple Frameworks push deep learning (Tensorflow, Pytorch, Keras, ...)

 These are well-supported and widely used (Google, Facebook, Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

- Flexible design of neural networks as Flow Graphs
- Backpropagation built-in (automatic differentiation)
- Out-of-the-box Parallelization on CPUs / GPUs
- pre-trained networks available (model zoos)

Deep Learning has become easy...

 Multiple Frameworks push deep learning (Tensorflow, Pytorch, Keras, ...)

 These are well-supported and widely used (Google, Facebook, Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

- Flexible design of neural networks as Flow Graphs
- Backpropagation built-in (automatic differentiation)
- Out-of-the-box Parallelization on CPUs / GPUs
- pre-trained networks available (model zoos)
- **Visualization** of network behavior (e.g., tensorboard)

Neural Networks as Flow Graphs

Neural Networks as Flow Graphs

Deep Learning Frameworks view NNs as so-called flow graphs:

- The boxes correspond to operations/functions: Matrix multiplications, vector-adds, sigmoids, ...
- The nodes are data objects: vectors, matrices, or more generally n-dimensional *tensors*.

Neural Networks as Flow Graphs

There are three different kinds of tensors:

- 1. Inputs: features x, targets t, ...
- 2. Parameters: weight matrices (W^2, W^3) , biases $(\mathbf{b}^2, \mathbf{b}^3)$, ...
- 3. Results from applying operations / functions (a^2, a^3)

31

Tensorflow

Tensorflow is the most commonly used deep learning framework.

Features

- developed by Google
- open-source (License: Apache 2.0)
- Interfaces: Python, C/C++
- Platforms: Linux, Mac OS X, Windows, Android

Tensorboard: Illustrations

Outline

- 1. Introduction
- 2. Neural Networks
- 3. Convolution
- 4. CNNs
- 5. Deep CNNs
- 6. Tooling: Tensorflow
- 7. [Practical] CNNs in Tensorflow
- 8. Transfer Learning

Outline

- 1. Introduction
- 2. Neural Networks
- 3. Convolution
- 4. CNNs
- 5. Deep CNNs
- 6. Tooling: Tensorflow
- 7. [Practical] CNNs in Tensorflow
- 8. Transfer Learning

- R&D Project SMULGRAS (1 year, 2016-17)
- development of 2D-to-3D image-graphics search

- R&D Project SMULGRAS (1 year, 2016-17)
- development of 2D-to-3D image-graphics search

 Applications: customized product design, community-based modeling, copyright infringement, ...

Challenges

Challenges

Preprocessing: Rendering

- representation of 3D model with rendered views
- camera sampling: Monte carlo / subdivision
- camera points at object center, roll = 0°
- background: plain, Flickr skybox
- graphics: high (raytracing, casted shadows) low (Phong shading)

View-based Approach: Two Models

"transfer"

38

View-based Approach: Two Models

"from-scratch"

"transfer"

View-based Approach: Two Models

"from-scratch"

"transfer"

Experiments: Sample Results

- ▶ 200 models of chairs
 (≈ 40,000 views, subset of [4])
- 340 (calibrated) photos of chairs (self-captured, ground truth by chessboard marker)

Experiments: Sample Results

- ▶ 200 models of chairs
 (≈ 40,000 views, subset of [4])
- 340 (calibrated) photos of chairs (self-captured, ground truth by chessboard marker)

Recognition

Pose Estimation

Experiments: Pose Estimation Setup

- 200-400 random training views per chair
- accuracy measure: angle between camera positions c and c'

$$E(c,c') \coloneqq \arccos\left(\frac{c^T \cdot c'}{\|c\| \cdot \|c'\|}\right)$$

Experiments: Pose Estimation Setup

- 200-400 random training views per chair
- accuracy measure: angle between camera positions c and c'

$$E(c,c') \coloneqq \arccos\left(\frac{c^T \cdot c'}{\|c\| \cdot \|c'\|}\right)$$

Results: Transfer Learning

best generalization: Inception Layer 7 (768x8x8 dimensions)

Experiments: Comparing both models

Testing on graphics

- generalization between models
- best results with from-scratch CNN
- average angle error of about 11.12° (compared to 14.73°)

Experiments: Comparing both models

Testing on graphics

- generalization between models
- best results with from-scratch CNN
- average angle error of about 11.12° (compared to 14.73°)

Testing on photos

- from-scratch CNN: strong domain drift observed
- transfer learning: model outperforms all from-scratch runs

Experiments: Sample results

- from-scratch CNN (left) and transfer learning (right)
- Example 1: Angle error of about 30°
- Example 4: Angle error of about 13.5°

The End

References I

- Mocha.jl: Deep Learning for Julia. https://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/ (retrieved: Nov 2016).
- [2] picture shared by Christoph Lampert. contact: http://pub.ist.ac.at/~chl/.
- [3] H. A H Al-Najjar, B. Kalantar, B. Pradhan, V. Saeidi, A. Abdul Halin, N. Ueda, and S. Mansor. remote sensing land cover classification from fused dsm and uav images using convolutional neural networks. Remote Sensing, 2019:1461, 06 2019.
- [4] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic. Seeing 3D chairs: Exemplar Part-based 2D-3D Alignment using a Large Dataset of CAD models. In Proc. CVPR, pages 3762–3769, 2014.
- [5] C. Kawatsu, F. Koss, A. Gillies, A. Zhao, J. Crossman, B. Purman, D. Stone, and D. Dahn. Gesture recognition for robotic control using deep learning. 08 2017.
- [6] M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolutional Networks. CoRR, abs/1311.2901, 2013.