
– SSDA 2019 / Islamabad –
Aug 20, 2019

Convolutional Neural
Networks (CNNs)

Prof. Dr. Adrian Ulges
DCSM Department

RheinMain University of Applied Sciences

20. August 2019

1

Outline

1. Introduction

2. Neural Networks

3. Convolution

4. CNNs

5. Deep CNNs

6. Tooling: Tensorflow

7. [Practical] CNNs in Tensorflow

8. Transfer Learning

2

Introduction

3

DFKI Google

Quintiq

HSRM
(seit 2013)

Working Group “Learning and Visual Systems” > lavis.cs.hs-rm.de

Outline

1. Introduction

2. Neural Networks

3. Convolution

4. CNNs

5. Deep CNNs

6. Tooling: Tensorflow

7. [Practical] CNNs in Tensorflow

8. Transfer Learning

4

Neural Networks

Each neuron...

1. ... weighs its inputs

2. ... aggregates incoming energy

3. ... applies an activation function

5

Neural Networks

0.7

0.5

0.3

2

0

-1

input
1.6

output
0.73

0.5

3

-2

4

Each neuron...

1. ... weighs its inputs

2. ... aggregates incoming energy

3. ... applies an activation function

5

Neural Networks Training: Backpropagation

target
values ttraining

sample x

activa-
tion a

Training = Adjusting Weights

▸ iteratively, pick a training sample.

▸ compute the deviation from the target with a loss function.

▸ minimize loss by gradient descent.

6

Neural Networks Training: Backpropagation

W,

b

LL-1L-2

W,

b
W,

b

target
values t

activa-
tion a

backpropagationtraining
sample x

Training = Adjusting Weights

▸ iteratively, pick a training sample.

▸ compute the deviation from the target with a loss function.

▸ minimize loss by gradient descent.

6

Enter: Deep Learning

SVMs Deep Learning

1990s – 2000s 2012 – today

nonlinearity
through...

kernels stacking layers
(at least 3)

optimization easy hard

#samples ≤ 20K up to 1010

feature
engineering

heavy none
(representation learning)

facilitated
by ...

— ▸ hardware (GPUs)

▸ clever topologies
(CNNs, LSTMs)

▸ tweaks
(losses+activations,
optimizers, shortlinks,
regularizers, attention)

7

Enter: Deep Learning

SVMs Deep Learning

1990s – 2000s 2012 – today

nonlinearity
through...

kernels stacking layers
(at least 3)

optimization easy hard

#samples ≤ 20K up to 1010

feature
engineering

heavy none
(representation learning)

facilitated
by ...

— ▸ hardware (GPUs)

▸ clever topologies
(CNNs, LSTMs)

▸ tweaks
(losses+activations,
optimizers, shortlinks,
regularizers, attention)

7

Enter: Deep Learning

SVMs Deep Learning

1990s – 2000s 2012 – today

nonlinearity
through...

kernels stacking layers
(at least 3)

optimization easy hard

#samples ≤ 20K up to 1010

feature
engineering

heavy none
(representation learning)

facilitated
by ...

— ▸ hardware (GPUs)

▸ clever topologies
(CNNs, LSTMs)

▸ tweaks
(losses+activations,
optimizers, shortlinks,
regularizers, attention)

7

Enter: Deep Learning

SVMs Deep Learning

1990s – 2000s 2012 – today

nonlinearity
through...

kernels stacking layers
(at least 3)

optimization easy hard

#samples ≤ 20K up to 1010

feature
engineering

heavy none
(representation learning)

facilitated
by ...

— ▸ hardware (GPUs)

▸ clever topologies
(CNNs, LSTMs)

▸ tweaks
(losses+activations,
optimizers, shortlinks,
regularizers, attention)

7

Enter: Deep Learning

SVMs Deep Learning

1990s – 2000s 2012 – today

nonlinearity
through...

kernels stacking layers
(at least 3)

optimization easy hard

#samples ≤ 20K up to 1010

feature
engineering

heavy none
(representation learning)

facilitated
by ...

— ▸ hardware (GPUs)

▸ clever topologies
(CNNs, LSTMs)

▸ tweaks
(losses+activations,
optimizers, shortlinks,
regularizers, attention)

7

Neural Networks on Images: General Thoughts

▸ A network feeds pixel values to neurons.

▸ Why not connect a neuron with all pixels?

1. pixels interact mostly locally

2. shift invariance: recognize an object no matter where!

→ Convolution gives us just that!

8

Neural Networks on Images: General Thoughts

▸ A network feeds pixel values to neurons.

▸ Why not connect a neuron with all pixels?

1. pixels interact mostly locally

2. shift invariance: recognize an object no matter where!

→ Convolution gives us just that!

8

Neural Networks on Images: General Thoughts

▸ A network feeds pixel values to neurons.

▸ Why not connect a neuron with all pixels?

1. pixels interact mostly locally

2. shift invariance: recognize an object no matter where!

→ Convolution gives us just that!
8

Outline

1. Introduction

2. Neural Networks

3. Convolution

4. CNNs

5. Deep CNNs

6. Tooling: Tensorflow

7. [Practical] CNNs in Tensorflow

8. Transfer Learning

9

Correlation/Convolution

A convolution is a transformation of signals (here, images):

Definition (Input Images)

Let the input to a neural network be a (grayscale) image x

of size N×M. Each pixel (i , j) has a value x(i , j) ∈ R.

Definition (Convolution)

We define a filter mask w as a matrix of size W×W .

Then the convolution of image x with mask w is defined as:

y(i , j) ∶=
W /2

∑
k,l =−W /2

w(k , l) ⋅ x(i + k , j + l) // correlation

y(i , j) ∶=
W /2

∑
k,l =−W /2

w(k , l) ⋅ x(i − k , j − l) // convolution

10

Correlation/Convolution

A convolution is a transformation of signals (here, images):

Definition (Input Images)

Let the input to a neural network be a (grayscale) image x

of size N×M. Each pixel (i , j) has a value x(i , j) ∈ R.

Definition (Convolution)

We define a filter mask w as a matrix of size W×W .

Then the convolution of image x with mask w is defined as:

y(i , j) ∶=
W /2

∑
k,l =−W /2

w(k , l) ⋅ x(i + k , j + l) // correlation

y(i , j) ∶=
W /2

∑
k,l =−W /2

w(k , l) ⋅ x(i − k , j − l) // convolution

10

Correlation/Convolution (cont’d)

0
0

0 2
3

2 5 0 -3 -5
0 1 0 0 -3
0 2 1 0 1
-1 0 1 2 1
-3 -5 -5 -1 0

1 1 0
1 0 -1

1 4 0 -1 -4
0 1 3 1 0
0 0 1 2 1
-2 0 0 1 1
-3 -3 -1 -1 0

Image x Mask w* = Image y

83
-1 -4 0 3 4
-1 -3 -2 -5 2
-1 -5 -6 -1 2
-2 -5 -5 -3 0
-1 -3 -1 0 0

-42

0 0 0 0 0
0 0 0 0 0

1 1 -2 -2 8

Remarks
▸ Intuition: Shift the filter mask over the image.

At each position, compute the weighted sum.

▸ At the boundary, the mask reaches outside the image.
We can pad the input image (here: zero padding).

11

Correlation/Convolution (cont’d)

0
0

0 2
3

2 5 0 -3 -5
0 1 0 0 -3
0 2 1 0 1
-1 0 1 2 1
-3 -5 -5 -1 0

1 1 0
1 0 -1

1 4 0 -1 -4
0 1 3 1 0
0 0 1 2 1
-2 0 0 1 1
-3 -3 -1 -1 0

Image x Mask w* = Image y

83
-1 -4 0 3 4
-1 -3 -2 -5 2
-1 -5 -6 -1 2
-2 -5 -5 -3 0
-1 -3 -1 0 0

-42

0 0 0 0 0
0 0 0 0 0

1 1 -2 -2 8

Remarks
▸ Intuition: Shift the filter mask over the image.

At each position, compute the weighted sum.

▸ At the boundary, the mask reaches outside the image.
We can pad the input image (here: zero padding).

11

Correlation/Convolution (cont’d)

0
0

0 2
3

2 5 0 -3 -5
0 1 0 0 -3
0 2 1 0 1
-1 0 1 2 1
-3 -5 -5 -1 0

1 1 0
1 0 -1

1 4 0 -1 -4
0 1 3 1 0
0 0 1 2 1
-2 0 0 1 1
-3 -3 -1 -1 0

Image x Mask w* = Image y

83
-1 -4 0 3 4
-1 -3 -2 -5 2
-1 -5 -6 -1 2
-2 -5 -5 -3 0
-1 -3 -1 0 0

-42

0 0 0 0 0
0 0 0 0 0

1 1 -2 -2 8

Remarks
▸ Intuition: Shift the filter mask over the image.

At each position, compute the weighted sum.

▸ At the boundary, the mask reaches outside the image.
We can pad the input image (here: zero padding).

11

Convolution = Feature Detection image: [2]

mask input images feature maps

▸ By carefully designing filter masks, convolution allows us to
scan the image for certain features (here, the t-junction in
the “4”).

▸ The resulting feature map shows where “interesting” regions
in the image are.

12

Convolution = Feature Detection image: [2]

mask input images feature maps

▸ By carefully designing filter masks, convolution allows us to
scan the image for certain features (here, the t-junction in
the “4”).

▸ The resulting feature map shows where “interesting” regions
in the image are.

12

Outline

1. Introduction

2. Neural Networks

3. Convolution

4. CNNs

5. Deep CNNs

6. Tooling: Tensorflow

7. [Practical] CNNs in Tensorflow

8. Transfer Learning

13

Convolutional Neural Networks
mask input images feature maps

Idea: a neural network that applies convolutions (=CNN)

▸ Layer 1: run filters over the image.

▸ Layer 2: classify based on feature maps.

▸ Such a convolutional neural network can
learn its filter masks by backpropagation!

14

Convolutional Neural Networks
mask input images feature maps

Idea: a neural network that applies convolutions (=CNN)

▸ Layer 1: run filters over the image.

▸ Layer 2: classify based on feature maps.

▸ Such a convolutional neural network can
learn its filter masks by backpropagation!

14

Convolutional Layers: Multi-Channel Input

▸ In practice, inputs to a convolution can have multiple
channels (e.g. color images: R,G,B).

convolution
(single-channel)

mask
(W x W)

N

M

N

M

convolution
(multi-channel)

mask
(W x W x #channels)

N

M

N

M

#channels

▸ We extend the convolution to sum over the channels too:

y(i , j) ∶=
W /2

∑
k,l =−W /2

#channels

∑
c=1

w(k, l , c) ⋅ x(i + k, j + l , c)

▸ Input and mask become 3D data “cubes” (tensors).

15

Convolutional Layers: Multi-Channel Input

▸ In practice, inputs to a convolution can have multiple
channels (e.g. color images: R,G,B).

convolution
(single-channel)

mask
(W x W)

N

M

N

M

convolution
(multi-channel)

mask
(W x W x #channels)

N

M

N

M

#channels

▸ We extend the convolution to sum over the channels too:

y(i , j) ∶=
W /2

∑
k,l =−W /2

#channels

∑
c=1

w(k, l , c) ⋅ x(i + k, j + l , c)

▸ Input and mask become 3D data “cubes” (tensors).

15

Convolutional Layers: Multi-Channel Input

▸ In practice, inputs to a convolution can have multiple
channels (e.g. color images: R,G,B).

convolution
(single-channel)

mask
(W x W)

N

M

N

M

convolution
(multi-channel)

mask
(W x W x #channels)

N

M

N

M

#channels

▸ We extend the convolution to sum over the channels too:

y(i , j) ∶=
W /2

∑
k,l =−W /2

#channels

∑
c=1

w(k, l , c) ⋅ x(i + k, j + l , c)

▸ Input and mask become 3D data “cubes” (tensors).

15

Convolutional Layers: Multi-Channel Output

▸ In practice, we are not interested in detecting only one feature.

▸ We apply multiple filters, obtaining multiple feature maps.

▸ For K filters, we obtain a N ×M ×K output tensor.

convolution
(single filter)

mask

N

M

N

M

#channels

convolution
(multiple filters)

masks
(#masks=3)

N

M

#channels

N

M

#masks

16

Convolutional Layers: Multi-Channel Output

▸ In practice, we are not interested in detecting only one feature.

▸ We apply multiple filters, obtaining multiple feature maps.

▸ For K filters, we obtain a N ×M ×K output tensor.

convolution
(single filter)

mask

N

M

N

M

#channels

convolution
(multiple filters)

masks
(#masks=3)

N

M

#channels

N

M

#masks

16

Convolutional Layers: Pooling

convolution Pooling
(scale by 2)

masks

N

M

N

M

N/2

M/2

f

activation
function

#channels #masks

#masks #masks

▸ Finally, we downscale the output masks using pooling.
▸ Pooling simply picks the mean or max value out of 2×2 pixels.
▸ We also apply an activation function for each pixel.

17

Convolutional Layers: Pooling

convolution Pooling
(scale by 2)

masks

N

M

N

M

N/2

M/2

f

activation
function

#channels #masks

#masks #masks

▸ Finally, we downscale the output masks using pooling.
▸ Pooling simply picks the mean or max value out of 2×2 pixels.

▸ We also apply an activation function for each pixel.

17

Convolutional Layers: Pooling

convolution Pooling
(scale by 2)

masks

N

M

N

M

N/2

M/2

f

activation
function

#channels #masks

#masks #masks

▸ Finally, we downscale the output masks using pooling.
▸ Pooling simply picks the mean or max value out of 2×2 pixels.
▸ We also apply an activation function for each pixel.

17

Convoution = Few Weights

fully connected

N

M

convolutional

N

M

Fully Connected Layer

▸ N ×M pixels left, N ×M pixels right.

▸ All are connected pairwise: (N ×M)2 edges!

▸ Example: 320×240 input → 5.8 bio. parameters /

Convolutional Layer

▸ Each pixel has a small local receptive field.

▸ K filters. Each filter has W ×W values.

▸ Example: 20 filters, 5 × 5 → 500 parameters ,

18

Convoution = Few Weights

fully connected

N

M

convolutional

N

M

Fully Connected Layer

▸ N ×M pixels left, N ×M pixels right.

▸ All are connected pairwise: (N ×M)2 edges!

▸ Example: 320×240 input → 5.8 bio. parameters /

Convolutional Layer

▸ Each pixel has a small local receptive field.

▸ K filters. Each filter has W ×W values.

▸ Example: 20 filters, 5 × 5 → 500 parameters ,
18

Outline

1. Introduction

2. Neural Networks

3. Convolution

4. CNNs

5. Deep CNNs

6. Tooling: Tensorflow

7. [Practical] CNNs in Tensorflow

8. Transfer Learning

19

From CNNs to Deep CNNs

▸ State-of-the-Art CNNs are deep: They repeat convolution and
pooling multiple times.

▸ Spatial resolution decreases.

▸ The number of kernels increases.

20

From CNNs to Deep CNNs

▸ State-of-the-Art CNNs are deep: They repeat convolution and
pooling multiple times.

▸ Spatial resolution decreases.

▸ The number of kernels increases.

20

Deep CNNs images: [6]

With more layers, the level of abstraction increases

21

Deep CNNs images: [6]

With more layers, the level of abstraction increases

21

DeepCNNs: Architectures image: [5]

22

Example: Inception v3 [1]

▸ A deep CNN
(convolutional neural network)

▸ 22 layers, about 25 mio. parameters

▸ 5 bio. multiply-adds per inference

▸ pre-trained on 1.2 mio. images to
recognize 1000 object categories

▸ human-level object recognition
(ImageNet: 6.8% top-5-error)

▸ good basis for transfer learning.

23

 preprocessing
(convolutions +

pooling)

mixed

mixed_1

mixed_2

mixed_3

mixed_4

mixed_5

mixed_6

mixed_7

mixed_8

mixed_9

mixed_10

FCL +
softmax

Filter Concat

1x3 1x3

3x3

1x1

1x3 1x3

1x1

1x1

pool 1x3

Input

Filter Concat

1x1

1x7

1x1

1x1

pool 1x1

Input

7x1

1x7

7x1

1x7

7x1

Filter Concat

1x1

5x5

1x1

1x1

pool 1x1

Input

3x3

3x3

Filter Concat

1x1 pool 3x3

Input

3x3

3x3

Filter Concat

1x1 1x1 pool

Input

3x3

3x3

3x3

Example: Inception v3 [1]

▸ A deep CNN
(convolutional neural network)

▸ 22 layers, about 25 mio. parameters

▸ 5 bio. multiply-adds per inference

▸ pre-trained on 1.2 mio. images to
recognize 1000 object categories

▸ human-level object recognition
(ImageNet: 6.8% top-5-error)

▸ good basis for transfer learning.

23

 preprocessing
(convolutions +

pooling)

mixed

mixed_1

mixed_2

mixed_3

mixed_4

mixed_5

mixed_6

mixed_7

mixed_8

mixed_9

mixed_10

FCL +
softmax

Filter Concat

1x3 1x3

3x3

1x1

1x3 1x3

1x1

1x1

pool 1x3

Input

Filter Concat

1x1

1x7

1x1

1x1

pool 1x1

Input

7x1

1x7

7x1

1x7

7x1

Filter Concat

1x1

5x5

1x1

1x1

pool 1x1

Input

3x3

3x3

Filter Concat

1x1 pool 3x3

Input

3x3

3x3

Filter Concat

1x1 1x1 pool

Input

3x3

3x3

3x3

Example: Inception v3 [1]

▸ A deep CNN
(convolutional neural network)

▸ 22 layers, about 25 mio. parameters

▸ 5 bio. multiply-adds per inference

▸ pre-trained on 1.2 mio. images to
recognize 1000 object categories

▸ human-level object recognition
(ImageNet: 6.8% top-5-error)

▸ good basis for transfer learning.

23

 preprocessing
(convolutions +

pooling)

mixed

mixed_1

mixed_2

mixed_3

mixed_4

mixed_5

mixed_6

mixed_7

mixed_8

mixed_9

mixed_10

FCL +
softmax

Filter Concat

1x3 1x3

3x3

1x1

1x3 1x3

1x1

1x1

pool 1x3

Input

Filter Concat

1x1

1x7

1x1

1x1

pool 1x1

Input

7x1

1x7

7x1

1x7

7x1

Filter Concat

1x1

5x5

1x1

1x1

pool 1x1

Input

3x3

3x3

Filter Concat

1x1 pool 3x3

Input

3x3

3x3

Filter Concat

1x1 1x1 pool

Input

3x3

3x3

3x3

Tasks

▸ segmentation

▸ object detection

▸ object categorization

▸ similarity matching

▸ ...
24

Tasks (cont’d) image: [3]

25

Outline

1. Introduction

2. Neural Networks

3. Convolution

4. CNNs

5. Deep CNNs

6. Tooling: Tensorflow

7. [Practical] CNNs in Tensorflow

8. Transfer Learning

26

Deep Learning Toolboxes

Deep Learning has become easy...

▸ Multiple Frameworks
push deep learning
(Tensorflow, Pytorch, Keras, ...)

▸ These are well-supported and widely used (Google, Facebook,
Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

Typical Features

▸ Flexible design of neural networks as Flow Graphs

▸ Backpropagation built-in (automatic differentiation)

▸ Out-of-the-box Parallelization on CPUs / GPUs

▸ pre-trained networks available (model zoos)

▸ Visualization of network behavior (e.g., tensorboard)

27

Deep Learning Toolboxes

Deep Learning has become easy...

▸ Multiple Frameworks
push deep learning
(Tensorflow, Pytorch, Keras, ...)

▸ These are well-supported and widely used (Google, Facebook,
Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

Typical Features

▸ Flexible design of neural networks as Flow Graphs

▸ Backpropagation built-in (automatic differentiation)

▸ Out-of-the-box Parallelization on CPUs / GPUs

▸ pre-trained networks available (model zoos)

▸ Visualization of network behavior (e.g., tensorboard)

27

Deep Learning Toolboxes

Deep Learning has become easy...

▸ Multiple Frameworks
push deep learning
(Tensorflow, Pytorch, Keras, ...)

▸ These are well-supported and widely used (Google, Facebook,
Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

Typical Features

▸ Flexible design of neural networks as Flow Graphs

▸ Backpropagation built-in (automatic differentiation)

▸ Out-of-the-box Parallelization on CPUs / GPUs

▸ pre-trained networks available (model zoos)

▸ Visualization of network behavior (e.g., tensorboard)

27

Deep Learning Toolboxes

Deep Learning has become easy...

▸ Multiple Frameworks
push deep learning
(Tensorflow, Pytorch, Keras, ...)

▸ These are well-supported and widely used (Google, Facebook,
Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

Typical Features

▸ Flexible design of neural networks as Flow Graphs

▸ Backpropagation built-in (automatic differentiation)

▸ Out-of-the-box Parallelization on CPUs / GPUs

▸ pre-trained networks available (model zoos)

▸ Visualization of network behavior (e.g., tensorboard)

27

Deep Learning Toolboxes

Deep Learning has become easy...

▸ Multiple Frameworks
push deep learning
(Tensorflow, Pytorch, Keras, ...)

▸ These are well-supported and widely used (Google, Facebook,
Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

Typical Features

▸ Flexible design of neural networks as Flow Graphs

▸ Backpropagation built-in (automatic differentiation)

▸ Out-of-the-box Parallelization on CPUs / GPUs

▸ pre-trained networks available (model zoos)

▸ Visualization of network behavior (e.g., tensorboard)

27

Deep Learning Toolboxes

Deep Learning has become easy...

▸ Multiple Frameworks
push deep learning
(Tensorflow, Pytorch, Keras, ...)

▸ These are well-supported and widely used (Google, Facebook,
Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

Typical Features

▸ Flexible design of neural networks as Flow Graphs

▸ Backpropagation built-in (automatic differentiation)

▸ Out-of-the-box Parallelization on CPUs / GPUs

▸ pre-trained networks available (model zoos)

▸ Visualization of network behavior (e.g., tensorboard)

27

Deep Learning Toolboxes

Deep Learning has become easy...

▸ Multiple Frameworks
push deep learning
(Tensorflow, Pytorch, Keras, ...)

▸ These are well-supported and widely used (Google, Facebook,
Nvidia, DropBox, ebay, airbnb, Airbus, Intel, Uber, ...)

Typical Features

▸ Flexible design of neural networks as Flow Graphs

▸ Backpropagation built-in (automatic differentiation)

▸ Out-of-the-box Parallelization on CPUs / GPUs

▸ pre-trained networks available (model zoos)

▸ Visualization of network behavior (e.g., tensorboard)

27

Neural Networks as Flow Graphs

28

W1x

f MATMUL

x‘

f ADD

b1

z1

f SIGMOID

a1 W2

f MATMUL

x‘‘

f ADD

b2

z2

f SIGMOID

a2

E

t

da
ta

 f
lo

w

b2

b1

W1

x a1

W2

a2

data flow

Neural Networks as Flow Graphs

W1x

f MATMUL

x‘

f ADD

b1

z1

f SIGMOID

a1 W2

f MATMUL

x‘‘

f ADD

b2

z2

f SIGMOID

a2

E

t

da
ta

 f
lo

w

b2

b1

W1

x a1

W2

a2

data flow

Deep Learning Frameworks view NNs as so-called flow graphs:
▸ The boxes correspond to operations/functions:

Matrix multiplications, vector-adds, sigmoids, ...
▸ The nodes are data objects: vectors, matrices, or more

generally n-dimensional tensors.
29

Neural Networks as Flow Graphs

W1x

f MATMUL

x‘

f ADD

b1

z1

f SIGMOID

a1 W2

f MATMUL

x‘‘

f ADD

b2

z2

f SIGMOID

a2

E

t

da
ta

 f
lo

w

b2

b1

W1

x a1

W2

a2

data flow

There are three different kinds of tensors:

1. Inputs: features x, targets t, ...

2. Parameters: weight matrices (W 2,W 3), biases (b2,b3), ...

3. Results from applying operations / functions (a2,a3)
30

Tensorflow

Tensorflow is the most commonly used deep learning framework.

Features
▸ developed by Google

▸ open-source (License: Apache 2.0)

▸ Interfaces: Python, C/C++

▸ Platforms: Linux, Mac OS X, Windows, Android

Tensorboard: Illustrations

31

Outline

1. Introduction

2. Neural Networks

3. Convolution

4. CNNs

5. Deep CNNs

6. Tooling: Tensorflow

7. [Practical] CNNs in Tensorflow

8. Transfer Learning

32

Outline

1. Introduction

2. Neural Networks

3. Convolution

4. CNNs

5. Deep CNNs

6. Tooling: Tensorflow

7. [Practical] CNNs in Tensorflow

8. Transfer Learning

33

Image-Graphics Retrieval

▸ R&D Project SMULGRAS (1 year, 2016-17)

▸ development of 2D-to-3D image-graphics search

▸ Applications: customized product design, community-based
modeling, copyright infringement, ...

34

Image-Graphics Retrieval

▸ R&D Project SMULGRAS (1 year, 2016-17)

▸ development of 2D-to-3D image-graphics search

▸ Applications: customized product design, community-based
modeling, copyright infringement, ...

34

Image-Graphics Retrieval

Challenges

photo to 3D model pose estimation 3D model registration
(≈ 3D object recognition)

35

Image-Graphics Retrieval

Challenges

photo to 3D model pose estimation 3D model registration
(≈ 3D object recognition)

36

Preprocessing: Rendering

▸ representation of 3D model
with rendered views

▸ camera sampling: Monte carlo / subdivision

▸ camera points at object center, roll = 0○

▸ background: plain, Flickr skybox

▸ graphics: high (raytracing, casted shadows)
low (Phong shading)

37

View-based Approach: Two Models

“from-scratch” “transfer”

training
views

photo

„from-scratch“ CNN

pose

x
y
z

3D model

rendering

38

View-based Approach: Two Models

“from-scratch” “transfer”

training
views

photo

„from-scratch“ CNN

pose

x
y
z

training
views

photo

Inception v3 CNN

neural features

...

3D model

rendering

3D model

rendering

38

View-based Approach: Two Models

“from-scratch” “transfer”

training
views

photo

„from-scratch“ CNN

pose

x
y
z

training
views

photo

Inception v3 CNN

neural features

...

KNN

pose

3D model

rendering

3D model

rendering

38

Experiments: Sample Results
▸ 200 models of chairs

(≈ 40,000 views, subset of [4])

▸ 340 (calibrated) photos of chairs
(self-captured, ground truth

by chessboard marker)

Recognition

Pose Estimation

39

Experiments: Sample Results
▸ 200 models of chairs

(≈ 40,000 views, subset of [4])

▸ 340 (calibrated) photos of chairs
(self-captured, ground truth

by chessboard marker)

Recognition

Pose Estimation

39

Experiments: Pose Estimation

Setup

▸ 200-400 random training views per chair

▸ accuracy measure: angle between camera positions c and c’

E(c , c ′) ∶= arccos (cT ⋅ c ′
∣∣c ∣∣ ⋅ ∣∣c ′∣∣)

Results: Transfer Learning

1 2 3 4 5 6 7 8 9 10
Inception v3 layer

0

5

10

15

20

25

30

35

40

av
g.

 a
ng

le
 e

rro
r E

simple (n=153)
all (n=263)
best match

▸ best generalization: Inception Layer 7 (768x8x8 dimensions)

40

Experiments: Pose Estimation

Setup

▸ 200-400 random training views per chair

▸ accuracy measure: angle between camera positions c and c’

E(c , c ′) ∶= arccos (cT ⋅ c ′
∣∣c ∣∣ ⋅ ∣∣c ′∣∣)

Results: Transfer Learning

1 2 3 4 5 6 7 8 9 10
Inception v3 layer

0

5

10

15

20

25

30

35

40

av
g.

 a
ng

le
 e

rro
r E

simple (n=153)
all (n=263)
best match

▸ best generalization: Inception Layer 7 (768x8x8 dimensions)
40

Experiments: Comparing both models

Testing on graphics

▸ generalization between models

▸ best results with from-scratch
CNN

▸ average angle error of about
11.12○ (compared to 14.73○)

Testing on photos

▸ from-scratch CNN: strong domain drift observed

▸ transfer learning: model outperforms all from-scratch runs

41

tra
ining: g

raphics

tra
ining: p

hotos

tra
ining: g

raph. +
 photos

0

10

20

30

40

50

60

70

a
v
g
 a

n
g
le

 e
rr

o
r

E

11.12
14.73

29.69 27.52

16.56
13.98

testing: graphics, from-scratch

testing: graphics, transfer

testing: photos, from-scratch

testing: photos, transfer

Experiments: Comparing both models

Testing on graphics

▸ generalization between models

▸ best results with from-scratch
CNN

▸ average angle error of about
11.12○ (compared to 14.73○)

Testing on photos

▸ from-scratch CNN: strong domain drift observed

▸ transfer learning: model outperforms all from-scratch runs

41

tra
ining: g

raphics

tra
ining: p

hotos

tra
ining: g

raph. +
 photos

0

10

20

30

40

50

60

70

a
v
g
 a

n
g
le

 e
rr

o
r

E

11.12
14.73

29.69 27.52

16.56
13.98

testing: graphics, from-scratch

testing: graphics, transfer

testing: photos, from-scratch

testing: photos, transfer

Experiments: Sample results

▸ from-scratch CNN (left) and transfer learning (right)

▸ Example 1: Angle error of about 30○

▸ Example 4: Angle error of about 13.5○

42

43

References I
[1] Mocha.jl: Deep Learning for Julia.

https://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/ (retrieved: Nov 2016).

[2] picture shared by Christoph Lampert.
contact: http://pub.ist.ac.at/~chl/.

[3] H. A H Al-Najjar, B. Kalantar, B. Pradhan, V. Saeidi, A. Abdul Halin, N. Ueda, and S. Mansor.
remote sensing land cover classification from fused dsm and uav images using convolutional neural networks.
Remote Sensing, 2019:1461, 06 2019.

[4] M. Aubry, D. Maturana, A. Efros, B. Russell, and J. Sivic.
Seeing 3D chairs: Exemplar Part-based 2D-3D Alignment using a Large Dataset of CAD models.
In Proc. CVPR, pages 3762–3769, 2014.

[5] C. Kawatsu, F. Koss, A. Gillies, A. Zhao, J. Crossman, B. Purman, D. Stone, and D. Dahn.
Gesture recognition for robotic control using deep learning.
08 2017.

[6] M. D. Zeiler and R. Fergus.
Visualizing and Understanding Convolutional Networks.
CoRR, abs/1311.2901, 2013.

44

https://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/
http://pub.ist.ac.at/~chl/

	Introduction
	Neural Networks
	Convolution
	CNNs
	Deep CNNs
	Tooling: Tensorflow
	[Practical] CNNs in Tensorflow
	Transfer Learning

