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Question 1/3
How a graph is represented in computer memory?

e Type of graph representation in computer memory
e There are two ways:

o Sequential representation

o Linked representation ) ‘




Question 1/3
How a graph is represented in computer memory?

Sequential representation

e Adjacency matrix
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Question 1/3
How a graph is represented in computer memory?

Sequential representation

e Adjacency matrix
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Question 1/3
How a graph is represented in computer memory?

Sequential representation

e Incidence matrix
e1 626364 656

000011
100111
I=1110000
011000
001001




Question 1/3
How a graph is represented in computer memory?

Linked representation

e Adjacency list
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Question 2/3

How graphs are stored on disk?

<?xml version="1.0" encoding="UTF-8" ?>
<descriptors generationTime="1421079803.32" nbRegion="15">
<region compactness="0.292119565217" idRegion="0" nbPixel="539">
<colorRgb b="198" g="198" r="206"/>
<colorLab L="204" a="129" b="124"/>
<boundingBox height="23" width="32" x="109" y="165"/>
<moments>0.182159670549,0.00546902073257,5.53115452371e-05,3.23028031097e-
06,2.35327007343e-11,-1.04512269946e-07,3.62022171482e-11</moments>
<adjacentRegion>
<id id="3">
<Percentage val="0.547266107331"/>
</id>
<id id="8">
<Percentage val="0.61328705673"/>
</id>
<id id="9">
<Percentage val="0.538285151261"/>
</id>
<id id="10">
<Percentage val="0.324987337731"/>
</id>
<id id="11">
<Percentage val="0.231954249729"/>
</id>
<id id="13">
<Percentage val="0.371791495215"/>
</id>
<id id="14">
<Percentage val="0.244609544714"/>
</id>
</adjacentRegion>
</region>

SSGCI competition (http://ssgci.univ-Ir.fr)

Le, TN., Lugman, M.M., Dutta, A., Héroux, P., Rigaud,
C., Guérin, C., Foggia, P, Burie, J.C., Ogier, J.M.,
Lladés, J. and Adam, S., 2018. Subgraph spotting in
graph representations of comic book images. Pattern
Recognition Letters, 112, pp.118-124.
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Question 3/3
In which languages can i program/code a graph-based method?

Matlab

MatlabBGL, Graph and Network algorithms, GAIMC, ...
Python

Networkx, igraph, ...
C/C++

Boost Graph Library, ...

and many others ...

12



Saturday 21st september 2019
09h00 — 12h30

Part-1
e A historic perspective of graph-based
methods in PR & DIA
e Neural Networks on graphs and modern
trends in graph-based PR & DIA

Coffee break (10h30 - 11h00)

Part-2
e Applications of Graph Neural Networks
o Learning Graph Distances
o Table Detection http://gmprdia.univ-Ir.fr
e Hands-on
o Deep Graph Library

UNIVERSITY OF

~
™ 1
: 3

‘CVC | EXETER <5, ICDAR 2019 .,

T w2y T I Y 1sthinternational Conference on Document Analysis and Recognition
Centre de Visié per Computador 20



Structural and Statistical Pattern Recognition

Pattern Recognition

Structural

Statistical

Data structure

symbolic data structure

numeric feature vector

Representational strength Yes No
Fixed dimensionality No Yes
Sensitivity to noise Yes No
Efficient computational tools No Yes

14



How images (and/or other types of
content) are represented by graphs?



Graph

e Agraph G =(V,E)is a mathematical structure for representing relationships.

e Agraph G = (V, E)consists of a set of nodes V connected by edges E.
Q>\/ /|
Q(_, Nodes ._|~ Edges




Directed and Undirected Graph

&

Directed Graph Undirected Graph 17



Attributed Graph

An attributed Graph is a 4-tuple G = (V, E, o, 8)

Set of nodes |/
Setofedges ECV xV
Node attribute function o : V — Ly,

Edge attribute function 5 : £ — Lg

18



Graph Representation: Issues to Consider

Graph representation of objects depends on:
1. Problem definition
2. Type of solution / methodology

3. Stability and noise tolerance

19



Discriminant units of information in an underlying
Image for representing it by a graph

e Critical Points

e Line Segments

e Homogeneous Regions
e Keypoints

e Convex Regions

e etc.



Critical Points

e Critical points from skeleton or edge analysis as nodes.

e Type of edges:
o Adjacency
o  Proximity
o k-NN

Delaunay triangulation

O

e Example
o  Symbol spotting by hashing serialized subgraphs.
O

Critical points as nodes and their connections as edges. [ ] ¢ )

A. Dutta, J. Llados, and U. Pal. A symbol spotting approach in graphical documents by hashing serialized graphs. In PR, vol. 46, no. 3, 24
pp. 752-768, 2013.



Line Segments

e Line segments from skeleton or edge analysis as nodes.

e Type of edges:
o Adjacency

o  Proximity

o k-NN
o Delaunay triangulation
e Example [ T 7

o  Subgraph matching applied to symbol spotting.

o Each line segment as a node and upto 3 nearest neighbors are joined to form edges.

A. Dutta, J. Lladdés, H. Bunke and U. Pal. “A Product graph based method for dual subgraph matching applied to symbol spotting". 2o
GREC, 2014.



Homogeneous Regions

e Regions either existing or generated by a preprocessing stage as nodes.

e Type of edges:
o Adjacency
o  Proximity

o Delaunay triangulation

YOU'VE SEEMED SO LUNHARRY ™
LATELY, CYNTRY! L WISH THERE

1 WISH YOU'D LET /A TRY
AND MAKE YOU HAPPY! 1

e Example

o SSGCI competition, ICPR 2016.

o RAG of cartoon characters

o  Subgraph spotting




Keypoints

e Detected keypoints using some off-the-shelf algorithm as nodes.

e Type of edges:
o  Proximity
o k-NN

o Delaunay triangulation

e Example

o  Symbol recognition.

o Shape context of detected SIFT interest points.

T. H. Do, S. Tabbone, O. R. Terrades. “Sparse representation over learned dictionary for symbol recognition". SP, pp. 36-47, 2016.

24



Example: Skeleton Graph

e Skeleton graph

e Each junction or end point as a
node of the graph

e Edges are created following the
skeleton

Figure credit: Bai and Latecki PAMI 2008

X. Bai and L. J. Latecki. Path Similarity Skeleton Graph Matching. IEEE TPAMI, vol. 30, no. 7, 1282-1292, 2008. 25



Example: Region Adjacency Graph

e Region adjacency graph

e Each white region as a node in
the graph

e Each pair of adjacent nodes is
connected by an edge

Figure credit: Le Bodic et al 2012

P. L. Bodic, P. Héroux, S. Adam and Y. Lecourtier. An integer linear program for substitution-tolerant subgraph isomorphism and its use 2%
for symbol spotting in technical drawings. PR, vol. 45, no. 12, pp. 4214-4224, 2012.



Example: Graph of convexities

e Convex part segmentation
e FEach convex part as node

e Nearest nodes are joined as edges

Figure credit: Riba et al, PRL 2017

P. Riba, J. Lladéds, A. Fornés, A. Dutta. Large-scale graph indexing using binary embeddings of node contexts for information spotting in

document image databases. PRL, vol. 87, pp. 203 - 211, 2017. 27



Example: Graph of critical points

e Critical points, grid etc as nodes.

e Adjacent nodes on the writing
are joined.

e Normalized coordinates as node
attributes

Wt B

Histograph dataset
(http://www.histograph.ch/)

Critical points as nodes.

Adjacent nodes on the symbol
are joined.

Coordinate as node attributes.

Line type as edge attributes.

r .

GREC dataset
(http://www.fki.inf.unibe.ch/databases)
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Example: Vecto-Quad graph representation

e Graph representation developed for line
drawings

e Each node in the graph represents a line
in underlying image

e Thin lines are termed as vectors

e Thick lines or filled shapes are termed as
quadrilaterals

e Connections between the
vectors/quadrilaterals are represented by
edges

e Attributes on nodes as well as edges

Graphic symbol Vectorized Attributed relational graph

R. Qureshi, J. Ramel, H. Cardot, and P. Mukherji, “Combination of symbolic and statistical features for symbols
recognition,” in IEEE ICSCN, 2007, pp. 477—482.

J.Y. Ramel, N. Vincent, H. Emptoz, "A structural Representation for understanding line-drawing images”, 29
InternationalJournalonDocumentAnalysisandRecognition, vol.3(2),2000,pp.58- 66.



Example: Vecto-Quad graph representation

e \ectors and Quadrilaterals representation
well adapted to the underlying line-drawing ) )
images 1

%

AN

1K\—/3
2

"

R. Qureshi, J. Ramel, H. Cardot, and P. Mukherji, “Combination of symbolic and statistical features for symbols
recognition,” in IEEE ICSCN, 2007, pp. 477—482.

J.Y. Ramel, N. Vincent, H. Emptoz, "A structural Representation for understanding line-drawing images”, 30
InternationalJournalonDocumentAnalysisandRecognition, vol.3(2),2000,pp.58- 66.



Example: Vecto-Quad graph representation

e Graph-based representations have built-in
rotation invariance

ElectricalD.BMP ElectricalH.BMP

Electrical-D (Symbolique) Electrical-H (Symbolique)

R. Qureshi, J. Ramel, H. Cardot, and P. Mukherji, “Combination of symbolic and statistical features for symbols
recognition,” in IEEE ICSCN, 2007, pp. 477—482.

J.Y. Ramel, N. Vincent, H. Emptoz, "A structural Representation for understanding line-drawing images”, 31
InternationalJournalonDocumentAnalysisandRecognition, vol.3(2),2000,pp.58- 66.



Example: MSER-regions based graph representation

e Graph representation developed for
colored comic images

e Each node in graph represents an MSER
region in underlying image

e Spatial relations between MSER regions
are represented by edges in graph

e Attributes on nodes as well as edges

Thanh-Nam Le, Muhammad Muzzamil Lugman, Jean-Christophe Burie, Jean-Marc Ogier: Content-based comic
retrieval using multilayer graph representation and frequent graph mining. ICDAR 2015: 761-765

M. M. Lugman, H. N. Ho, J.-c. Burie, and J.-M. Ogier, "Automatic indexing of comic page images for query by
example based focused content retrieval," in 10th 1APR International Workshop on Graphics
Recognition, United States, Aug. 2013.

32



Example: MSER-regions based graph representation

e Multilayer graph representation
o  Color layer
o Hu-moments layer
o  Compactness layer

Thanh-Nam Le, Muhammad Muzzamil Lugman, Jean-Christophe Burie, Jean-Marc Ogier: Content-based comic
retrieval using multilayer graph representation and frequent graph mining. ICDAR 2015: 761-765

M. M. Lugman, H. N. Ho, J.-c. Burie, and J.-M. Ogier, "Automatic indexing of comic page images for query by
example based focused content retrieval," in 10th 1APR International Workshop on Graphics 33

Recognition, United States, Aug. 2013.



Learning Graph Representation

e Learning graph that best
represent an image for matching
to another relevant image

e Fully connected graph of
detected key points

e [earning node and edge
parameters that prioritize a set of
nodes for a particular structure

M. Cho, K. Alahari and J. Ponce. Learning Graphs to Match. ICCV, 2013.

Figure credit: Cho et al 2013

34



How we can/used to solve Pattern
Recognition problems using graphs?



A very general overview of historical evolution of
graph-based solutions to Pattern Recognition

e Graph matching (isomorphism)
[Messmer, 1995] [Sonbaty and Ismail, 1998]

e Graph Edit Distance (GED)
[Bunke and Shearer, 1998] [Neuhaus and Bunke, 2006]

e Graph EMbedding (GEM)

[Lugman et al., 2009] [Sidere et al., 2009] [Gibert et al., 2011]



Graph matching

Finding matches (isomorphism) between two graphs.

G

X € {0, 1}””’

o Xia: | if nodeiin G corresponds to node a in G’

o Xia: O otherwise

37



Graph matching

Maximizing the matching score S

e o~

-

p
\ k
E” P el

X* = arg max S(G,G", X)

t X € {0,1}"™
s.t. :
Z?:I Xz'a g ]-7 ZZ:l X'ia, S 1

38



Graph matching

How to measure the matching score S ?

_______
- -
- ~.

e Each node and each edge has its own attribute

e Node similarity function

39



Graph matching

How to measure the matching score S ?

S(G,6',X) = staz, >

X,g=1 X'a:1,ij:1

e Sum of SVand SE values for the assignment X.

Splaij, ay)

40



Graph matching

How to measure the matching score S?

g <

0 Xia: 1 if node i in G corresponds to node a in g’

o Xiaz 0 otherwise

41



Advances in graph matching

e Quadratic assignment problem
o NP-hard, thus exact solution is infeasible
e Advances in approximate (inexact) algorithms

o Error-tolerant (inexact) graph matching

o Relaxation and Projection

42



Graph edit distance

e A measure of similarity between two graphs.
e Node and edge insertion, deletion, substitution.
e Summation of the edit costs

GED i
G.9) =, 18 g2 )

AR

A. Sanfeliu, K. S. Fu. A distance measure between attributed relational graphs for pattern recognition. IEEE TSMC, vol. 13, no. 3, 1983. 43



Graph embedding

By mapping a high dimensional
graph into a point in suitable
vector space, graph embedding
permits to perform the basic
mathematical computations
which are required by various
statistical pattern recognition
techniques, and offers interesting
solutions to the problems of
graph clustering and
classification.

Lugman, M. M. (2012). Fuzzy Multilevel Graph Embedding for Recognition, Indexing and Retrieval of Graphic
Document Images. Ph.D. thesis. University of Tours, France and Autonoma University of Barcelona, Spain.

44



Graph embedding

Structutal PR

Expressive,

convenient,

powerful but
computationally expensive
representations

Statistical PR

Mathematically sound,
mature,

less expensive and
computationally efficient
models

O~

Lugman, M. M. (2012). Fuzzy Multilevel Graph Embedding for Recognition, Indexing and Retrieval of Graphic
Document Images. Ph.D. thesis. University of Tours, France and Autonoma University of Barcelona, Spain.

45



Graph embedding

Graph probing based methods

[Wiener, 1947] [Papadopoulos et al., 1999] [Gibert et al., 2011] [Sidere et al., 2012]

number of nodes = 6
.W number of edges = 5
etc.

v=6,5,...



Graph embedding

Dissimilarity based methods

[Pekalska et al., 2005] [Ferrer et al., 2008] [Riesen, 2010] [Bunke et al., 2011]

Prototype graphs
P1

o SN

9 v = d(g, P1), d(g, P2), ...

47



Graph embedding

Graph feature extraction based methods

Node information

Edge information

Structure

Topology

Geometry

Node/Edge neighborhood information

Muhammad Muzzamil Luqgman, Jean-Yves Ramel, Josep Lladés, Thierry Brouard: Fuzzy multilevel graph embedding. Pattern
Recognition 46(2): 551-565 (2013)

Nicholas Dahma, Horst Bunke, Terry Caelli, Yongsheng Gao. Efficient subgraph matching using topological node feature constraints,
Pattern Recognition 48 (2015) 317330.

Hana Jarraya, Muhammad Muzzamil Lugman, Jean-Yves Ramel: Improving Fuzzy Multilevel Graph Embedding Technique by
Employing Topological Node Features: An Application to Graphics Recognition. GREC 2015: 117-132

48



Graph embedding

Graph feature extraction based methods - FMGE

Multilevel analysis of graph

Graph Level Structural Level
Information Information
[macro details] [intermediate details]

Elementary Level
Information
[micro details]

v Graph order v Node degree v' Node attributes
v Graph size v Homogeneity of v Edge attributes

subgraphs in graph

Graph
order

Graph
size

Embedding of
node degree

Embedding(s) of
subgraph(s) homogenity

Embedding(s) of
node attribute(s)

Embedding(s) of
edge attribute(s)

Muhammad Muzzamil Lugman, Jean-Yves Ramel, Josep Lladoés, Thierry Brouard: Fuzzy multilevel graph
embedding. Pattern Recognition 46(2): 551-565 (2013)

49




Graph embedding

e Graph kernels can be intuitively understood as functions measuring the similarity of pairs of graphs
e Graph kernels allow kernelized learning algorithms such as support vector machines to work directly
on graphs, without having to do feature extraction to transform them to fixed-length, real-valued

feature vectors
e Laplacian Graph Kernel, Treelet Kernel, Random Walk Kernel, Graphlet Kernel, etc.

Donatello Conte, Jean-Yves Ramel, Nicolas Sidere, Muhammad Muzzamil Lugman, Benoit Gauzere,
Jaume Gibert, Luc Brun, Mario Vento: A Comparison of Explicit and Implicit Graph Embedding

Methods for Pattern Recognition. GbRPR 2013: 81-90
50



A very general overview of historical evolution of
graph-based solutions to Pattern Recognition

e Graph matching (isomorphism)
[Messmer, 1995] [Sonbaty and Ismail, 1998]

e Graph Edit Distance (GED)
[Bunke and Shearer, 1998] [Neuhaus and Bunke, 2006]

e Graph EMbedding (GEM)

[Lugman et al., 2009] [Sidere et al., 2009] [Gibert et al., 2011]



What kind of Pattern Recognition
problems have been solved
by using graphs?



Graph similarity

Graph classification

Graph clustering

Graphics detection / localization / recognition / classification / clustering / spotting
Chemical molecules recognition / classification / clustering
Fingerprint recognition

Handwriting recognition

Signature recognition / verification

Document image segmentation / classification / clustering / indexing
QBE and CBIR in document images

Focused retrieval in document images

etc.

53



Subgraph Spotting through Explicit Graph Embedding: An Application to Content Spotting in Graphic
Document Images

;
(a) Query image.

I

Lugman, M. M., Ramel, J. Y., LIadés, J., & Brouard, T. (2011). Subgraph spotting through explicit graph
embedding: An application to content spotting in graphic document images. International Conference
on Document Analysis and Recognition, ICDAR, 870-874. 54



Automatic indexing of comic page images for query by example based focused content retrieval

Focused retrieval resultsT

Subgraph spotting
system

IMAGE REPOSITORY

INDEX OF COMIC PAGE
ATTRIBUTED REGION ADJACENCY
GRAPH REPRESENTATION
OF PANELS IN COMIC PAGES

Lugman, M. M., Ho, H. N., Burie, J., & Ogier, J. (2013). Automatic indexing of comic page images for
query by example based focused content retrieval. In Tenth IAPR International Workshop on Graphics
RECognition (GREC) (pp. 153—-157). 55



Content-based Comic Retrieval Using Multilayer Graph Representation and Frequent Graph Mining

“Commandant
JW. Cool”

Le, T., Lugman, M. M., Burie, J., & Ogier, J. (2015). Content-based Comic Retrieval Using Multilayer
Graph Representation and Frequent Graph Mining. 13th International Confrence on Document
Analysis and Recognition - ICDAR’15, 15-19.

56



How has the success story of deep
learning influenced the graph-based
methods of Pattern Recognition?



Success story of deep learning

l M ﬂ G E rl ﬁ ZT Sentence

Predicate / Verb Phrase

repositional Phrase

Noun Phrase
/\ NO}P{rase

Article Nolun Velrb Prepolsition Article Nolun
The dog sat beside the wall

Natural Language Processing (NLP)

Speech Data

Slide credit: Kipf et al. Deep Learning on Graphs with Graph Convolutional Networks 58



Evolution of deep learning & DeepMind

2?:&:»:3 AlphaGo
First NIPS IMJGE BN \jicrosoft
1) Speech
Perceptron Backprop SVM CNN Autoencoder acenoo R peec.:t.
Rosenblatt Werbos [PYUXS]  Vapnik LeCun  LeCun, Hinton Al Research ~ecognition
| | | | | | | | | | | | | |
1958 1959 1982 1987 1995 1997 1998 1999 2006 2010 2012 2014 2015 2016
I I I I I I I I I I I I I I
Visual cortex Neurocognitron RNN /LSTM ImageNet < 1o 501
Hubel & Wiesel Fukushima Schmidhuber breakthrough
— Krizhevsky
X - -
NVIDIA T=5Lnmn
GEFORCE Autonomous
cars

Slide credit: M. Bronstein et al. Geometrical Deep Learning, Tutorial, CVPR, 2017 59



C3: f. maps 16@10x10

CNN: LeNet 5

INPUT 6@28x28
C5:layer Fg; layer OUTPUT
120 84 10

e r
=T

| | Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

e 3 convolutional + 1 fully connected layer
e 1M parameters

e Training set: MNIST 70K images

e Trained on CPU

e tanh non-linearity

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. IEEE, 1998.

60



CNN: AlexNet

EN J Y A
i 192 28 204 2048 \dense
48 0%
. \ 13
EN =
224 Bl - .t Bl
7 iz ' 13 dense’| [dense]
N s 1000
1 \ 192 128 Max L
: 204 2048
224\(liStride Max: 128 Max pooling
of 4 pooling pooling
3 48

e 5 convolutional + 3 fully connected layer
e OOM parameters

e Trained on ImageNet 1.5M images

e Trained on GPU

e RelLU non-linearity

. ) A. Krizhevsky, |. Sutskever and G. Hinton. ImageNet Classification with Deep
e Dropout regularization Convolutional Neural Networks. NIPS, 2012,

61



Convolutional neural network

e Hierarchical compositionality

e \Weight sharing

e Big data

e Computational power

Feature maps

Subsampling

Convolutions

Subsampling  Fully connected

62



Traditional vs “deep” learning

Hand crafted features |—)| Classifier |—)| Output ‘

)| Deep neural network I >| Output ‘

63



a graph convolution can be generalized from a
standard 2D convolution

(a) 2D Convolution. Analogous
to a graph, each pixel in an image
is taken as a node where neigh-
bors are determined by the filter
size. The 2D convolution takes
the weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of a
node are ordered and have a fixed
size.

FY
@

£\

—\

=)

(b) Graph Convolution. To get a
hidden representation of the red
node, one simple solution of the
graph convolutional operation is
to take the average value of the
node features of the red node
along with its neighbors. Differ-
ent from image data, the neigh-
bors of a node are unordered and
variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

Zonghan Wu, Shirui Pan, Fengwen Chen,
Guodong Long, Chengqi Zhang, Philip S. Yu,
“A Comprehensive Survey on Graph Neural

Networks.”, arXiv 2019.
64



CNN: Message passing in a grid graph

e Individual message transforms

Wiyhy

e Sum everything up

> Wohy
U

e Full update
A = c(WERE + W IR+ o+ 000+ )

Animation by V. Dumoulin 6



Graph structured data

What if the data look like this?

® 9
o O -
. or this:
O

66



Graph structured data

Real world examples:

e Social networks

e \World wide web

e Protein interaction networks
e Telecommunication networks

e Knowledge graphs

67



Message passing on graphs

Consider this undirected graph: Calculate update for node in green:

Update rule: t+1 tyxst 1 t t
h,” = oa(h,W; + — E h, W7)
v wENv
More general or simpler function also can be chosen

1. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl. Neural Message Passing for Quantum Chemistry. ICML, 2017.
2. T Kipf, M. Welling, Semi-Supervised Classification with Graph Convolutional Networks. ICLR, 2017 68



Several iteration of message passing
Node and edge updation:

Initial stage: Final stage:

b

e X X
v‘: 6N

9
'

69



Graph wise classification

.

& 9

*
S -

~ N\
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Node wise classification

building
* .
*
. . - &
- \ airplane
'. grass

object S ) 2 )
building grass tree cow shee sk airplane  water
classes s s P 7 P

bicycle = flower Sign bird book chair road cat

Figure credit: Shotton et al [JCV 2007
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Neural Message Passing

Message function:

mytt = Y M(h, b, epw)
’LUENU Q

Update function: '. /UV
t+1 t t+1
hitt = U (ht mit) w“’ ‘0

Readout function: w
— R{AT | v e G})

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl. Neural Message Passing for Quantum Chemistry. ICML, 2017. 72
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Running Example

o X
> ¥
O
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Message passing

Message function:

5 i

ht ht , Eow)
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Message passing

Message function:

ht T

ht ht , Eow)
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Message passing

Message function:

] .\ v
>
W g
M(

i

t t
h’U7 h'un evw)
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Message passing

Message function:

] w.\ v
> %
®
M(

i

t t
h”U? h'un e’Uw)
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Message passing

Message function:

o X

K B K [
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Message passing

Example message function:

A
M (Riy, By, evw) = I,
..\ (o P, €vn) Vdeg(v) deg(w)

v
3 where £ is the hidden state of the node v, e is edge
feature of vw, and 4 is a learned matrix.

T. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017.
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Message passing

Update function:

80



Message passing

Update function:

o
"i/‘/

\

{444

81



Message passing

Example update function:

4444
I
0000

b
‘,,

o
‘i/‘/

\

.
O

4

8 (ht t+1> _ O(Wt t+1>

where W are learned matrices one for each time step, o is a non-linearity function such as ReLU (Rectified Linear
Unit)
T. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017. 82



Readout

Readout function:

o X
%
O

Example:

R=f(>_hy)

N I \ , Readout

o \'
j=R({h, |veG})

This readout function sums the current hidden states of all the
nodes and computes an output through a learnable neural

network f.
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Convolutional Networks on Graphs

e Message Function
mitt = M(RL, b, evw) = (RL,, epw)
e Update Function
B — Uy(hE, mb) = O(Htcieg(v)th)

(% (%

e Readout Function
= R=f( ZsoftmaX(Wthfj))

v,t
where (.,.) denotes concatenation, Ht are learned matrices one for each time

step 7 and degree edge label, fls a neural network and G is a non-linearity
function such as RelLU

D. Duvenaud, D. Maclaurin, J. A. Iparraguirre, R. G. Bombarelli, T. Hirzel, A. Aspuru-Guzik, R. P. Adams. Convolutional Networks on 84
Graphs for Learning Molecular Fingerprints, NIPS 2015.


https://arxiv.org/abs/1509.09292

Gated Graph Sequence Neural Networks
e Message Function

mf}H = M (hyy, By, epw) = A
e Update Function

Pt = Ur(hyy, mi™) = GRU(hg, mg™)
e Readout Function

j=R=> oli(hl, hy) ® (j(hL))

where A, is a learned matrix one for each discrete edge label, GRU is Gated

Recurrent Unit, 7, j are neural networks and © is element wise multiplication, G is
a non-linearity function such as RelLU

iy

Evw

Y. Li, D. Tarlow, M. Brockschmidt and R. Zemel. Gated graph sequence neural networks. ICLR, 2016. 85



GRU

Tt

2z =0 (W, - [he_1,1¢])
re =0 (Wy - [he_1,2¢])
he = tanh (W - [ry % he_1, 24])
hy = (1—zt)*ht_1—1—zt*ﬁt
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Interaction Networks

e Message Function

H_l M(hf}, hfw 67}10) — f(hfjv hﬁw 67}10)

o Update Function

hf}—H —U (ht t—H) (ht Ty, T t—l—l)

v
e Readout Function

=R=f(> )

where f, g represent neural networks, (.,.) denotes concatenation, X, is an
external vector representing some outside influence to the node V.

P. W. Battaglia, R. Pascanu, M. Lai, D. Rezende, K. Kavukcuoglu. Interaction Networks for Learning about Objects, Relations and 87
Physics, NIPS, 2016.



Molecular Graph Convolutions

e Message Function

m%+1 = M (hy, By, epw) = €

vw
e Update Function

it = Uy, mith) = a(Wy (a(Wohl), mith)

e Readout Function
j =R = a(Wi(a(Wa, epy,), a(Ws(hl), b))

where (.,.) denotes concatenation, Wl are learned weight matrices, O is the
RelLU activation.

S. Kearnes, K. McCloskey, M. Berndl, V. Pande, P. Riley, Molecular Graph Convolutions: Moving Beyond Fingerprints, JCAMD, vol. 30,
no. 8, 2016.
’ 88



Convolutional and Locally Connected Neural Networks

e Message Function
t 1 _ t t t 1t
e Update Function
t+1 _ t t+1 t+1
hy" = Utlhy, my") = a(my,™)

where va are parameterized by the eigenvectors of the graph Laplacian L and
the other parameters of the model, G is a non-linearity function such as RelLU

1. Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS 2016.
2. Bruna et al., Spectral Networks and Locally Connected Networks on Graphs, ICLR 2014.
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Graph Convolutional Networks

e Message Function

A
If—I—l M(ht ht evw)— VW

v/ deg(v) deg(w)

iy

e Update Function

hf}%—l — U (ht t+1) _ O'(Wt t+1)

where AVW is a learnable parameter, W' are learned matrices one for each time
step, O is a non-linearity function such as RelLU

T. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017.
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Recommended Reading

Tutorials:

Geometric Deep Learning, Tutorial, CVPR, 2017. http://geometricdeeplearning.com/
Deep Learning on Graphs with Graph Convolutional Networks. http://deeploria.gforge.inria.fr/thomasTalk.pdf

List of papers:

Gilmer et al., Neural Message Passing for Quantum Chemistry, 2017. https://arxiv.org/abs/1704.01212

Kipf et al., Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017. https://arxiv.org/abs/1609.02907
Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS 2016.
https://arxiv.org/abs/1606.09375

Bruna et al., Spectral Networks and Locally Connected Networks on Graphs, ICLR 2014. https://arxiv.org/abs/1312.6203
Duvenaud et al., Convolutional Networks on Graphs for Learning Molecular Fingerprints, NIPS 2015.
https://arxiv.org/abs/1509.09292

Li et al., Gated Graph Sequence Neural Networks, ICLR 2016. https://arxiv.org/abs/1511.05493
Battaglia et al., Interaction Networks for Learning about Objects, Relations and Physics, NIPS 2016.
https://arxiv.org/abs/1612.00222

Kearnes et al., Molecular Graph Convolutions: Moving Beyond Fingerprints, 2016. https://arxiv.org/abs/1603.00856

91


http://geometricdeeplearning.com/
http://deeploria.gforge.inria.fr/thomasTalk.pdf
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/1606.09375
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Recommended Reading

Source Code / Repositories:

Neural Message Passing for Computer Vision: https://github.com/priba/nmp_qc

Graph Convolutional Networks in TensorFlow: https://github.com/tkipf/gcn

Graph Convolutional Networks in PyTorch: https://github.com/tkipf/pygcn

PyTorch implementation of graph ConvNets: https://github.com/xbresson/graph_convnets_pytorch

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering: https://github.com/mdeff/cnn_graph

Other material:
e  Blog post on Graph Convolutional Networks: http://tkipf.github.io/graph-convolutional-networks
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Application:

Learning Graph Distances

Riba et al. Learning Graph Distances with Message Passing Neural Networks. In ICPR, 2018

95


https://priba.github.io/assets/publi/conf/2018_ICPR_PRiba.pdf

Graph edit distance (Reminder)

e A measure of similarity between two graphs.
e Node and edge insertion, deletion, substitution.
e Summation of the edit costs

GED(G,G') = min c (e;)
(e1,....ex)€P(G,G")

AR

A. Sanfeliu, K. S. Fu. A distance measure between attributed relational graphs for pattern recognition. IEEE TSMC, vol. 13, no. 3, 1983.



Architecture

Graph similarity d(G,,(x,), G,\(X,))
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Graph similarity

e Hausdorff Distance

H(A, B) = max (max inf d(a, b), max inf d(a,b))
acA beB beB acA

e Chamfer Distance

H(A,B):Zbiél%da b—|~ anelilda b)
acA

e Proposed distance.

H(V1, V5)
Vil + [V

d(g1,92) =

98



Contrastive loss

Given D, =d(G,[(9,), G,(9,)) where g, and g, are graphs and W a set of
specific weights, the Loss Function is

I(Dyy) = 1 D%I,f, if Y =1 (positive pair)
i3 {max(0, m — Dyy)}2, if Y =0 (negative pair)

where m=1 is the adaptive margin.

[
@ .-~
N ~
w4 N
7> ®
;@ @ » \
I 1 \
I * AL o) ®
| «-@ |
\ e
v &
,\’( ‘ ‘\ q‘/ % @ Positive pair
o *
Sae__-" <\. % @ Negative pair



Datasets

Letter

e Synthetic Graphs
e 15 classes
e 750 Graphs per class

e 3 different distortion levels

- AAAA

George Washington

Handwritten words

Several graph constructions
105 keywords

4894 instances

HistoGraph (subset for classification)

s
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Classification Letters

LOW MED HIGH
BP* 99.73 94.27 89.87
HEDf 97.87 86.93 79.2
Embedding? 99.80 94.90 92.90

95.04 83.20 72.27
MPHN +0.7224  £1.2189  +2.0060

98.08 89.0136 74.77

Siamese MPNN

+ 0.1068 =+ 0.1808 = 6.4505

0819 8837  79.65

Test BP +0.1361 4041 +6.4345
98.00  89.79  77.07

est (HED +0.1461  +0.3110  +5.6106
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Classification Histograph

Siamese MPNN
Subset BP* PSGEf 3-NN 5-NN

85.31 82.80
+ 1.6552 + 0.5600

73.15 69.65
+ 2.6014 + 1.50064

Keypoint 77.62 80.42

Projection 81.82 80.42
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Retrieval GeorgeWashington

Method mAP
PHOC* 64.00
BOF HMM' 80.00
DTW'01 42.26
oTw DTS
DTW'16 68.64

Mean Ensemble BP* 69.16
Siamese MPNN 75.85+3.64

103



Application:

Table Detection by GNN

Riba et al. Table Detection in Invoice Documents by Graph Neural Networks. In ICDAR, 2019



https://priba.github.io/assets/publi/conf/2019_ICDAR_PRiba.pdf

Motivation

Invoice Documents

Semi-structured Documents

Tables share Repetitive Patterns

INVOICENO: 111696

") WOMEN'S MAGAZINES

3 DATE:  10/29/53
FAMILY CIRCLE PAGE 1
INVOICE
| PLEASE REMIT TO:
LURILLARC MECIA SckvIiis | avr nEHENSS RAGALL
19

ATTN: EILEEN ANTICNIELLC
UNE PARK AV

VEN| ‘7l::-l§37l
NEw YORKs NY 10CLe=5850

P
NEnARKs No

PARENT: LOEWS CCRPORATICK
DIVISION: LORILLARD INCe CIVe

BRAND: STYLE CIGARETTES
ITEM| DESCRIPTION AMOUNT _| NET AMOUNT
1|Pa0eti: M=30719-8017 DATE: 07/19/93

ISSUE: OCTOBER 12y 1993
THO GAT 2104000400 | 2104000400
FOUR comn
PAGE: 217
FULL UK 1-26
NEGOTIATED RAT 639500400~ | 1469500400
AGENCY connxssmn ’19 214975400~ | 124+525400
——— = - A Bl Mgt

2[Pe0ess H-30813-8009 DATE: 08/13/93

ISSUE: NOVEMBER 29 1993
ONE 1/3 PAGE VERTICAL 501680400 | 500680400

NEGOTIATED RATE 151680400- | 351000.00
NEGOTIATED RATE 124250400~
AGENCY_CONMISSION 39412050=
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ONE PAGE

FOUR COLOR
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|

|
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TERMS: NET 30 DAYS FROM INVOICE DATE = NO CASH DISCOUNT ALLOWED
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P T S it s oo
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Motivation

INVOICE

INVOICENO:  11169¢
& DATE:  10/29/%3

PAGE 1
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Graph Construction

INVOICENO! 111696

DATE:  1u/29/43

") WOMEN'S MAGAZINES

FAMILY CIRCLE PAGE: L
INVOICE
| PLEASE REMIT TO
LURILLARD MEGIA § AYT WCMER'S HAGALINES
Ty gt Chis PeCe 80X 163
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NET AMOUNT
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THO GATEFOLD 2104000400 | 2104000400

AGENCY COMNISSION 21497

- PR iy P

NEGOTIATED RATE L‘]D 634500400 | 1464500400
00= | 1249525400
b n\
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FoUR COLOR
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PAY THIS AMOUNT = | 201+875.00

1054000400 | 1054000460

369750400= | 604250400
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Graph Residual Block

Follows the idea of ResNet

GNN layer with skip connection

Edge weights are learned at the
beginning of the block

;

01100
10010
Input 10011 Node Input
01100
00100
Convolution

—* GNN

o

Adjacency
Learning

Convolution

L

Output

Node Output
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Architecture
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Obijective functions

e Node classifier: Linear classifier with Softmax operation

e Edge classifier: Binary Cross entropy

e Edge weights are learned at the beginning of the block

110



Table detection

e Discard O'ed edges
e Subgraphs with nodes classified as Table are considered

e Confidence score of these subgraphs are thresholded for the final decision

111



Datasets

CON-ANONYM RVL-CDIP
e 960 documents e Overall 25,000 images
e 8 region annotation e 5 region annotation
e Common car invoices e Selected 518 invoice class

e Not publicly available e Publicly available
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Node classification

Task CON-ANONYM RVL-CDIP

All  Table Edge All  Table Edge
Pow?2 828 96.4 — 57.8 80.9 —
+ Edge 842 97.0 0934 582 79.1 84.1
Pow5 827 96.2 - 56.b 82.3 —
+ Edge 845 97.2 034 62.3 83.9 84.0
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Table Detection

Task CON-ANONYM RVL-CDIP
F1-Score Precision Recall F1-Score Precision Recall
Pow 2 69.4 65.8 73.4 28.6 23.9 35.4
+ Edge 70.8 65.2 77.6 30.8 26.7 36.5
Pow 5 68.4 65.3 71.8 22.6 20.0 26.0

+ Edge 73.7 78.4 69.5 30.8 25.2 39.6
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Qualitative
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Graph Neural Networks



Neural Message Passing (Reminder)

Message function:

t+1 Z M(ht h,t e’uw) W

weN, Q K W
: (9
Update function: . . V
Pl _ mtH) O
v

U(ht,

Readout function: w

g = R({h, |veG})

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl. Neural Message Passing for Quantum Chemistry. ICML, 2017. 117



Simple Message Passing Layer

Let us consider a graph G = (V, A) where V is the set of nodes and A the adjacency matrix

MY V7 [ g)
V. Garcia and J. Bruna. Few-Shot Learning with Gra[ N

eural Networks. ICLR, 2018
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https://openreview.net/pdf?id=BJj6qGbRW

Formalization

13

20
3 2
11
01

\3 1)

&(kﬂ) Ge(x()) = (

G:

Z Bx(k)e(k)

Be Alk)

)

(V. A)
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. . &(H—l) Ge(x() (Z BX(k)e(k)>]
Formalization pea

G = (V, A

= {Ly), 4} 2V = v e RIVIx

o= (I \x/\x(o)‘)gﬁ)&, i Aw(o)H?)
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. . &(H—l) Ge(x() (Z BX(k)e(k)>]
Formalization pea

G = (V, A

A=y, 4} 2V = v e RIVIx
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&(kﬂ) Ge(x19) (Z Bx(k)g(k)>]
Formalization BEAW

G = (V,A)
(00010 0\ (7] 2 (1 1\
0o0o0110] (2|0 12
o _|voootof|Bl2] o1
A 110010) ([1lr] ~ |@)3
011101 |of1 9 4
\oooot1o) 31/ \o1
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%k“) = Ge(xM) = p ( 3 Bx(k)egk)>]
Formalization BEA®

But what other operators can we use in _A?

(1 nnnnn\

)nnitn N\
0(0(110010
0 0 121111
0 X 011101 . mm
0 ) 011310
\0\0 110140
\011101)
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Formalization

(k+1) _ = G¢( (k) (Z BX(k)g(k)>
Bc A)

But can we learn the operator we use in_A ?

if B,j =0

x,-(k) — xj(k)D) otherwise
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Simple Message Passing Layer

Let us consider a graph G = (V, A) where V is the set of nodes and A the adjacency matrix

(k1) GC(X(k)) — Z By (k (k)
Be Alk

V. Garcia and J. Bruna. Few-Shot Learning with Graph Neural Networks. ICLR, 2018
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https://openreview.net/pdf?id=BJj6qGbRW

Frameworks



Deep Learning Frameworks

O PyTorch ¥ TensorFlow

e Rapid prototyping in Research e Large-scale deployments
e Dynamic computational graphs e Cross-platform and embedded deployment

e Debugging e Static computational graphs
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https://pytorch.org/
https://www.tensorflow.org/

Graph Neural Networks Libraries

-

\_

O PyTorch \

@ PyTorch

geometric

e Pytorch-geometric

e Deep Graph Library

DeepGraphlLibrary

/

e ﬁ\d

¥ lensorFl

e Graph Nets (DeepMind) @
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https://pytorch.org/
https://www.tensorflow.org/
https://pytorch-geometric.readthedocs.io
https://www.dgl.ai/

Graph Neural Networks Libraries
. PyTorch a2 DeepGraphLibrary )

geometric

e Higher-level abstraction (auto-batching)
e Fast re-implementation of existing models
e No need to worry with sparse matrix

e Faster
multiplication
M. Fey and J.E. Lenssen. Fast graph representation learning with M. Wang et al. Deep Graph Library: Towards Efficient And Scalable
PyTorch Geometric. ICLR Workshop on Representation Learning on Deep Learning on Graphs. ICLR Workshop on Representation
Graphs and Manifolds, 2019 Qi\rning on Graphs and Manifolds, 2019 /
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https://pytorch-geometric.readthedocs.io
https://www.dgl.ai/
https://rlgm.github.io/papers/2.pdf
https://rlgm.github.io/papers/2.pdf
https://rlgm.github.io/papers/49.pdf
https://rlgm.github.io/papers/49.pdf

DeepGraphlLibrary

Adjacency Adjacency of
of cycle star

Adjacency of
star

M. Wang et al. Deep Graph Library: Towards Efficient And Scalable Deep Learning on Graphs. ICLR Workshop on Representation Learning on
Graphs and Manifolds, 2019
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https://www.dgl.ai/
https://rlgm.github.io/papers/49.pdf

Scratch Implementation


https://colab.research.google.com/drive/1CjicFAgc1PtSYBmQKt3OccsOHyf0a5MU

Implementation
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https://colab.research.google.com/drive/1ZkS9YkFgWMR39e9yf5BxcyqPQR4T_hZ1

Recommended Reading

e Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,

Maosong Sun, “Graph Neural Networks: A Review of Methods and Applications.”, arXiv 2018.

e Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu, “A

Comprehensive Survey on Graph Neural Networks.”, arXiv 2019.

e Ziwei Zhang, Peng Cui, Wenwu Zhu, “Deep Learning on Graphs: A Survey.”, arXiv 2018.

e Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst, “Geometric

Deep Learning: Going beyond Euclidean data.”, IEEE SPM 2017.

e Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl, “Neural

Message Passing for Quantum Chemistry.”, ICML 2017
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https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1901.00596
https://arxiv.org/pdf/1812.04202.pdf
https://arxiv.org/pdf/1611.08097.pdf
https://arxiv.org/pdf/1611.08097.pdf
https://arxiv.org/pdf/1704.01212.pdf
https://arxiv.org/pdf/1704.01212.pdf

Recommended Reading

e “Geometric Deep Learning” http://geometricdeeplearning.com/

o  Workshops: ICCV, ECCV, BMVC, ...
o Tutorials: CVPR, NIPS, ECCV, SIGGRAPH, ...

e Steeve Huang, “Hands-on Graph Neural Networks with PyTorch & PyTorch Geometric”

e “DeepGraphLibrary Tutorial”
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http://geometricdeeplearning.com/
http://geometricdeeplearning.com/
https://towardsdatascience.com/hands-on-graph-neural-networks-with-pytorch-pytorch-geometric-359487e221a8
https://docs.dgl.ai/tutorials/models/index.html

Discussion and Closing

e Are graphs still relevant?
e Are graph-based methods still useful for Pattern Recognition and
Document Image Analysis?

e \What are the current trends and next steps?

UNIVERSITY OF
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